期刊文献+

基于模糊熵的时间序列非线性检测方法

Testing for Nonlinearity in Time Series Based on the Fuzzy Entropy
在线阅读 下载PDF
导出
摘要 针对目前常用的特征量有关联维数和近似熵这两个指标在应用中存在不足,提出了一种新的替代数据法对时间序列中的非线性特性进行检测。替代数据法由零假设和检验特征量两部分组成。笔者提出将模糊熵作为特征量引入到替代数据法中检测时间序列的非线性特征,并在Logistic方程产生的非线性时间序列,以及线性AR模型产生的线性时间序列上进行了验证。研究结果表明,对于不同长度的时间序列,基于模糊熵的替代数据法是一种稳定、有效的非线性检测方法。 In this study, a new method of surrogate data for testing nonlinearity is described. Surrogate data is composed of null hypothesis and inspection characteristics. The common characteristics quantity includes correlation dimension and approximate entropy, both of which have some insufficiency in application. Fuzzy entropy is an newly emerged complex measure index and an improved algorithm of approximate entropy. This study introduces fuzzy Entropy as the characterlstlc quan validation on t duced by linea entropy is a st tity into surrogate data, testing the non-linear feature of the time series and making he nonlinear time series produced by Logistic equation and linear time series pror AR model. The result of this study shows that surrogate data based on the fuzzy able and efficient nonlinearity test for the time series of different length.
出处 《太原理工大学学报》 CAS 北大核心 2014年第3期369-371,407,共4页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61170136 6137101)
关键词 替代数据 模糊熵 时间序列 非线性检测 surrogate data fuzzy entropy time series nonlinearity test
  • 相关文献

参考文献11

  • 1Theiler J, Eubank S, Longin A etc. Testing for nonlinearity in time series: the method of surrogate data [J]. Physica D: Nonlinear Phenomena, 1992,~8(1 4) :77-94.
  • 2Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests [J]. Phys Rev Lett,1996,77(4):635- 638.
  • 3Ralf E. Testing for nonlinearity: the role of surrogate data[J] Chaos, Solitons and Fractals. 2002,13(1): 79 -84.
  • 4Suzuki T, Ikeguchi T, Suzuki M. Algorithms for generating surrogate data for sparsely quantized time series [J]. Physica D: Nonlinear Phenomena, 2007, 231(2) : 108-115.
  • 5Lueio J H, Valdes R, Rodriguez L R. Improvements to surrogate data methods for nonstationary time series[J]. Physica Re- view E, 2012,85(5) :056202.
  • 6张文超,谭思超,高璞珍.摇摆条件下自然循环系统流量混沌脉动的检验与预测[J].物理学报,2013,62(14):333-340. 被引量:3
  • 7()cak H. Automatic detection of epileptic seizures in Et~G using discrete wavelet trans~'orm and approximate entropy [J]. Ex- pert Systems with Applications, 2009, 36(2)~ 2027-2036.
  • 8于青.关联维数计算的分析研究[J].天津理工学院学报,2004,20(4):60-62. 被引量:12
  • 9Cao Rui, Li Li, Chen Junjie. Comparative study of approximate entropy and sample entropy in EEG data analysis [J]. Bio- technology: An Indian Journal, 2013, 7(11) 1493-498.
  • 10Chen Weiting,Zhuang Jun, Yu Wangxin, et al. Measuring complexity using FuzzyEn ApEn and SampEn [J]. Medical Engi- neering and Physics, 2009,31(1) :61-68.

二级参考文献15

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部