期刊文献+

Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator 被引量:21

Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator
原文传递
导出
摘要 Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 ~tA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technologv. Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 ~tA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technologv.
出处 《Nano Research》 SCIE EI CAS CSCD 2013年第12期880-886,共7页 纳米研究(英文版)
基金 This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Award No. DE-FG02-07ER46394), National Science Foundation (NSF) (No. 0946418), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M13). Patents have been filed based on the research results presented in this manuscript.
关键词 triboelectric nanogenerator harvesting vibration energy triple-cantilever self-powered systems triboelectric nanogenerator harvesting vibration energy triple-cantilever self-powered systems
  • 相关文献

参考文献33

  • 1Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 2Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316,102-105.
  • 3Zhang, J.; Wu, Z.; Jia, Y. M.; Kan, J. W.; Cheng, G. M. Piezoelectric bimorph cantilever for vibration-producing?hydrogen. Sensors 2013, 13. 367-374.
  • 4Park, K. I.; Jeong, C. K.; Ryu, I; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zircon ate titanate particles and carbon nanotubes. Adv. Eng. Mater., in press, DOl: 10.1 002/aenm.201300458.
  • 5Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.
  • 6Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 2004,115,523-529.
  • 7Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.
  • 8Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2011, 24, 279-284.
  • 9Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82-87.
  • 10Fan. F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012,1,328-334.

同被引文献179

  • 1赵鸿铎,梁颖慧,凌建明.基于压电效应的路面能量收集技术[J].上海交通大学学报,2011,45(S1):62-66. 被引量:39
  • 2宋玉苏,王树宗.海水电池研究及应用[J].鱼雷技术,2004,12(2):4-8. 被引量:19
  • 3何理,钟茂华,邓云峰.城市轨道交通危险因素分析[J].中国安全生产科学技术,2005,1(3):25-29. 被引量:35
  • 4王中林.压电式纳米发电机的原理和潜在应用[J].物理,2006,35(11):897-903. 被引量:21
  • 5GUAN M J,LIAO W H.On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[J].Smart Materials and Structures,2007,16(2):498-505.
  • 6沙山克·普里亚,丹尼尔·茵曼.能量收集技术[M].黄见秋,译.南京:东南大学出版社,2011.
  • 7WANG X D,SONG J H,LIU J,et al.Direct-current nanogenerator driven by ultrasonic waves[J].Science,2007,316(5821):102-105.
  • 8WANG Z L,SONG J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312(5771):242-246.
  • 9PARK H K,LEE K Y,SEO J S,et al.Charge-generating mode control in high-perfromance transparent flexible piezoelectric nanogenerators[J].Advanced Functional Materials,2011,21(6):1187-1193.
  • 10WANG X D.Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale[J].Nano Energy,2012,1(1):13-24.

引证文献21

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部