摘要
Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.
Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.