期刊文献+

基于融合DCT和LBP特征提取的面部表情识别 被引量:13

Facial Expression Recognition Based on Fusion Feature Extraction of DCT and LBP
在线阅读 下载PDF
导出
摘要 针对离散余弦变换(DCT)只能提取面部表情图像的全局特征,而忽略了临近像素之间的关系、不能提取纹理特征信息、不能准确区分相似表情等问题,提出一种融合离散余弦变换方法和局部二值模式(LBP)特征的表情特征提取方法。该方法首先将人脸图像经过DCT获得的低频系数作为表情的全局特征;然后用LBP对贡献率较大的嘴部、眼睛区域进行局部纹理特征提取,通过将LBP提取到的局部纹理特征与DCT提取到的全局特征进行融合,从而得到更有效的表情特征;最后利用支持向量机(SVM)进行识别。实验结果表明:该方法比单独使用DCT方法提取的表情特征更有利于识别,提高了表情识别的准确性,并将这个表情识别方法用于智能轮椅的控制上,收到了良好的效果。 To the problem that the discrete cosine transform (DCT) only can extract theobal characteristics pixels, so accurately the texture distinguish of facial expression while ignore the relationship between the adjacent feature information can not be extracted and similar expression can not be ed. A novel method by fusing discrete cosine transform (DCT) and local binary pattern (LBP) features was proposed for expression recognition in this research, lhe primary information of the face image was centralized in a small number of DCT coefficients, which were used as the global feature of the expression. Then LBP was used to extract the local features of the mouth and eyes area, which contributes most to facial expression recognition. Fusing the global and local texture feature would be more effective for facial expression recognition. Finally, support vector machine (SVM) was used to make feature fusion so as to complete facial expression recognition. Experimental results indicate that this method is better than individual DCT, which improves the accuracy of expression recognition, and can be used in the control of intelligent wheelchair successfully.
出处 《半导体光电》 CAS CSCD 北大核心 2014年第2期330-333,349,共5页 Semiconductor Optoelectronics
基金 重庆市教委科学技术研究项目(KJ120519)
关键词 面部表情识别 DCT LBP SVM facial expression recognition DCT LBP SVM
  • 相关文献

参考文献10

  • 1Chen X W,Thomas H. Facial expression recognition: A clustering-based approach[J]. Pattern Recognition Lett. ,2003,24(9/10) :1295-1302.
  • 2Buciu I,Kotrolpoulos C, Pitas I. Comparison of ICA approaches for facial expression recognition [ J]. Signal, Image and Video Processing, 2009, 3 (4): 345-361.
  • 3Jiang B, Yang G S, Zhang H L. Comparative study of dimension reduction and recognition algorithms of DIET and 2DPCA [ C ]//IEEE Inter. Conf. Machine Learning and Cybernetics, 2008 ( 1 ) : 407-410.
  • 4周建中,何良华.基于DWT-DCT-SVM的人脸表情识别[J].数据采集与处理,2006,21(1):64-68. 被引量:10
  • 5王毅,叶德谦.基于Gabor小波变换和两次DCT的人脸表情识别[J].微电子学与计算机,2009,26(5):262-264. 被引量:6
  • 6Jadhav D V,Holambe R S. Radon and discrete cosine transforms based feature extraction and dimensionality reduction approach for face recognition [J]. Signal Proc. , 2008, 88(10): 2604-2609.
  • 7Feng X, Hadid A, Pietikainen M. Facial expression recognition with local binary pattern and linear programming [J]. Pattern Recognition and Image Analysis, 2005, 15(2):546-549.
  • 8Ojala T,Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 9Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(7): 971- 987.
  • 10朱海洲,贾银山.基于支持向量机的遥感图像分类研究[J].科学技术与工程,2010,10(15):3659-3663. 被引量:26

二级参考文献25

共引文献39

同被引文献89

引证文献13

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部