期刊文献+

元胞人工蜂群算法及其在0-1规划问题中的应用 被引量:4

Cellular Artificial Bee Colony Algorithm and Its Application to 0- 1 Programming Problems
在线阅读 下载PDF
导出
摘要 针对人工蜂群算法早熟收敛问题,基于元胞自动机原理和人工蜂群算法,提出一种元胞人工蜂群算法.该算法将元胞演化和人工蜂群搜索相结合,利用元胞及其邻居的演化提高了种群多样性,避免陷入局部最优解.经一系列典型0-1规划问题实例的仿真实验和与其他算法对比,验证了本算法的效果和效率,获得了满意的结果. To improve the premature convergence problem of artificial bee colony algorithm, a cellular artificial bee colony algorithm(CABA) is proposed. Based on the principle of cellular automata, the evolution rules of cellular and its neighbor are introduced into the algorithm to maintain the bee population' s diversity. The algorithm can effectively avoid the local optimal solution. Simulated tests of typical 0 - lproramming problems and comparisons with other algo- rithms show that CABA has fast convergence speed and good global optimization ability. The effectiveness and effi- ciency of CABA is validated.
出处 《数学理论与应用》 2014年第1期83-91,共9页 Mathematical Theory and Applications
基金 国家自然科学基金(70871081) 上海市一流学科建设项目(S1201YLXK) 上海市教育委员会科研创新项目(14YZ090) 高等学校博士学科点专项科研基金联合资助课题(20123120120005)
关键词 人工蜂群算法 0-1规划 元胞自动机 智能优化 Artificial bee colony algorithm 0 - 1 programming Cellular automata Intelligent optimization
  • 相关文献

参考文献9

  • 1Banharnsakun A, achalakul T, sirinaovakul B. The best - so - far selection in artificial bee colony algorithm [J]. Applied Soft Computing, 2011, 11(2) : 2888 -2901.
  • 2ZHU G, KWONG S. Global best -guided artificial bee colony algorithm for numerical function optimization[ J]. Applied Mathematics and Computation, 2010, 217 (7) : 3166 - 3173.
  • 3LI G, NIU P, XIAO X. Development and investigation of efficient artificial bee colony algorithm for numerical function optimization[J]. Applied Soft Computing, 2012, 12(1): 320-332.
  • 4刘勇,马良.非线性0-1规划的元胞蚁群算法[J].系统管理学报,2010,19(3):351-355. 被引量:12
  • 5Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[ J]. Applied soft compu- ting, 2008, 8 ( 1 ) : 687 - 697.
  • 6Karaboga D, Aakay B. A comparative study of artificial bee colony algorithm [ J ]. Applied Mathematics and Computation, 2009, 214( 1 ) : 108 - 132.
  • 7刘勇,马良.元胞微粒群算法及其在多维背包问题中的应用[J].管理科学学报,2011,14(1):86-96. 被引量:14
  • 8WANG X, XIE X, CHENG T C E. A modified artificial bee colony algorithm for order acceptance in two - ma- chine flow shops [ J]. International Journal of Production Economics, 2013, 141 (1) : 14 -23.
  • 9Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J]. Journal of global optimization, 2007, 39(3): 459-471.

二级参考文献28

共引文献24

同被引文献63

  • 1王海,李一军,侯新培.基于Agent的电子商务自动谈判系统研究[J].系统工程理论与实践,2005,25(11):14-19. 被引量:9
  • 2徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 3刘建芹,贺毅朝,顾茜茜.基于离散微粒群算法求解背包问题研究[J].计算机工程与设计,2007,28(13):3189-3191. 被引量:29
  • 4潘文超.果蝇最佳化演算法[M].台北:沧海书局,2011:10-12.
  • 5Deng G; Cui Z, Gu X. A discrete artificial bee colony algorithm for the blocking flow shop scheduling problem//Intelligent Control and Automation (WCICA), 2012 10th World Congress on. IEEE, 2012:518-522.
  • 6Zhu G: Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 2010, 217(7):3166-3173.
  • 7Li G, Niu P, Xiao X. Development and investigation of eftieient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 2012, 12(1):320-332.
  • 8Xin-She Yang. Bat algorithm for multi-objective optimization. Int. J. Bio-Inspired Computation, 2011, 3(5):267-274.
  • 9Segura C, Miranda G, L:6n C. Parallel hypcrheuristics for the frequency assignment problem. Memetic Computing, 2011, 3(1): 33-49.
  • 10da Silva Maximiano M, Vega-Rodriguez M A, G6mez-Pulido J A, et al. A new Multi-objective Artificial Bee Colony algorithm to solve a real-world frequency assignment problem. Neural Computing and Applications, 2013, 22(7 -8): 1447 - 1459.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部