期刊文献+

Immobilization of insulin-like growth factor-1 onto thermosensitive hydrogels to enhance cardiac progenitor cell survival and differentiation under ischemic conditions 被引量:3

Immobilization of insulin-like growth factor-1 onto thermosensitive hydrogels to enhance cardiac progenitor cell survival and differentiation under ischemic conditions
原文传递
导出
摘要 Stem cell therapy is a promising approach to treat myocardial infarction. However, direct delivery of stem cells into hearts experiences poor cell engraftment and differentiation, due to ischemic conditions (low nutrient and oxygen) in the infarct hearts. Development of suitable cell carriers capable of supporting cell survival and differentiation under these harsh conditions is critical for improving the efficacy of current stem cell therapy. In this work, we created a family of novel cell carriers based on thermosensitive hydrogels and insulin-like growth factor 1 (IGF-1), and investigated if these cell carriers can improve cell sur- vival and differentiation under ischemic conditions. The thermosensitive hydrogels were synthesized from N-isopropylacryla- mide, acrylic acid, acrylic acid N-bydroxysuccinicimide ester, and 2-hydroxyethyl methacrylate-oligo(hydroxybutyrate). The hydrogel solutions can be readily injected through 26G needles, and can quickly solidify at 37 ~C to form highly flexible hy- drogels. IGF-I was immobilized into the hydrogels in order to support long-term cell survival and differentiation. Different amount of IGF- 1 was immobilized by using hydrogels with different content of N-hydroxysuccinicimide ester groups. Cardio- sphere derived cells were encapsulated in the hydrogels and cultured under ischemic conditions. The results demonstrated that a significant improvement of cell survival and differentiation was achieved after IGF-1 immobilization. These IGF-1 immobi- lized hydrogels have the potential to improve cell survival and differentiation in infarct hearts. Stem cell therapy is a promising approach to treat myocardial infarction. However, direct delivery of stem cells into hearts experiences poor cell engraftment and differentiation, due to ischemic conditions(low nutrient and oxygen) in the infarct hearts. Development of suitable cell carriers capable of supporting cell survival and differentiation under these harsh conditions is critical for improving the efficacy of current stem cell therapy. In this work, we created a family of novel cell carriers based on thermosensitive hydrogels and insulin-like growth factor 1(IGF-1), and investigated if these cell carriers can improve cell survival and differentiation under ischemic conditions. The thermosensitive hydrogels were synthesized from N-isopropylacryla- mide, acrylic acid, acrylic acid N-hydroxysuccinicimide ester, and 2-hydroxyethyl methacrylate-oligo(hydroxybutyrate). The hydrogel solutions can be readily injected through 26G needles, and can quickly solidify at 37 oC to form highly flexible hydrogels. IGF-1 was immobilized into the hydrogels in order to support long-term cell survival and differentiation. Different amount of IGF-1 was immobilized by using hydrogels with different content of N-hydroxysuccinicimide ester groups. Cardiosphere derived cells were encapsulated in the hydrogels and cultured under ischemic conditions. The results demonstrated that a significant improvement of cell survival and differentiation was achieved after IGF-1 immobilization. These IGF-1 immobilized hydrogels have the potential to improve cell survival and differentiation in infarct hearts.
出处 《Science China Chemistry》 SCIE EI CAS 2014年第4期568-578,共11页 中国科学(化学英文版)
基金 supported by the National Science Foundation of the United States(1160122,1006734)
关键词 thermosensitive hydrogels cardiosphere derived cells myocardial infarction cardiac differentiation stem cells 胰岛素样生长因子1 热敏水凝胶 细胞存活率 祖细胞 分化 缺血 心脏 甲基丙烯酸酯
  • 相关文献

参考文献47

  • 1Lindoso RS, Araujo DS, Ad?o-Novaes J, Mariante RM, Verdoorn KS, Fragel-Madeira L, Caruso-Neves C, Linden R, Vieyra A, Einicker- Lamas M. Paracrine interaction between bone marrow-derived stem cells and renal epithelial cells. Cell Physiol Biochem, 2011, 28: 267-278.
  • 2Zuo S, Jones WK, Li H, He Z, Pasha Z, Yang Y, Wang Y, Fan GC, Ashraf M, Xu M. Paracrine effect of Wnt11-overexpressing mesenchymal stem cells on ischemic injury. Stem Cells Dev, 2012, 21: 598-608.
  • 3Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S, Peng X, Li W, Xu Z, Sun L, Xu W. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev, 2012, 21: 67-75.
  • 4Raynaud CM, Halabi N, Elliott DA, Pasquier J, Elefanty AG, Stanley EG, Rafii A. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes. PloS One, 2013, 8: e54524.
  • 5Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci, 2008, 121: 3794-3802.
  • 6Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318: 1917-1920.
  • 7He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A, Bolli R. Human cardiac stem cells isolated from atrial appendages stably express c-kit. PloS One, 2011, 6: e27719.
  • 8Li Z, Guo X, Matsushita S, Guan J. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials, 2011, 32: 3220-3232.
  • 9Davis DR, Kizana E, Terrovitis J, Barth AS, Zhang Y, Smith RR, Miake J, Marbán E. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol, 2010, 49: 312-321.
  • 10Wang CC, Chen CH, Lin WW, Hwang SM, Hsieh PCH, Lai PH, Yeh YC, Chang Y, Sung HW. Direct intramyocardial injection of mesenchymal stem cell sheet fragments improves cardiac functions after infarction. Cardiovasc Res, 2008, 77: 515-524.

同被引文献17

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部