期刊文献+

Solitary wave solutions to higher-order traffic flow model with large diffusion

Solitary wave solutions to higher-order traffic flow model with large diffusion
在线阅读 下载PDF
导出
摘要 This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution. This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期167-176,共10页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11072141 and11272199) the National Basic Research Program of China(No.2012CB725404) the Shanghai Program for Innovative Research Team in Universities the Research Grants Council of the Hong KongSpecial Administrative Region,China(No.HKU7184/10E) the National Research Foundationof Korea(MEST)(No.NRF-2010-0029446)
关键词 higher-order traffic flow model viscosity coefficient approximate Korteweg-de Vries equation (KdV) solution finite element scheme higher-order traffic flow model, viscosity coefficient, approximate Korteweg-de Vries equation (KdV) solution, finite element scheme
  • 相关文献

参考文献1

二级参考文献26

  • 1D. Chowdhury, L. Santen, and A. Schreckenberg, Phys. Rep. 329 (2000) 199.
  • 2M.J. Lighthill and G.B. Whitham, Proc. R. Soc. London- Ser. A 229 (1995) 317.
  • 3P.I. Richards, Operations Research 4 (1956) 42.
  • 4H.J. Payne, in Mathematical Models of Pubic System, ed, G.A. Bekey, Simulation Council, La Jolla, CA (1971) p. 51.
  • 5R. Jiang, Q.S. Wu, and Z.J. Zhu, Transp. Res. B 36.(2002) 405.
  • 6G.C.K. Wong and S.C. Wong, Transp. Res. A 36 (2002) 827.
  • 7A.K. Gupta and V.K. Katiyar, Transportmetrica 3 (2007) 73.
  • 8C.F. Tang, R. Jiang, Q.S. and Y.H. Wu, Transp. Res. Wu B. Wiwatanapataphee Rec. 1999 (2007) 13.
  • 9T.Q. Tang, H.J. Huang, S.G. Zhao, and H.Y. Shang, Phys. Lett. A 373 (2009) 2461.
  • 10G.H. Peng, D.H. Sun, and H.P. He, Chin. Phys. B 18 (2009) 468.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部