期刊文献+

风光发电功率时间序列模拟的MCMC方法 被引量:39

A Markov Chain Monte Carlo Method for Simulation of Wind and Solar Power Time Series
在线阅读 下载PDF
导出
摘要 准确、合理地构建间歇性电源的发电功率模型对于电力系统的仿真分析与计算具有重要意义。提出了一种风光发电功率时间序列模拟的单变量与多变量马尔科夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)仿真方法。该模型针对风电场与光伏电站等多种类型的间歇性电源,构建发电功率时间序列的马尔科夫链,采用Gibbs抽样技术实现了单变量或多变量的时间序列模拟。不仅全面地分析了不同类型间歇性电源马尔科夫过程的特征与影响因素,并且在MCMC方法中考虑了多变量之间的相互联系,使模型能够适应多组间歇性电源彼此间存在相关性的情形。对德国2家电力公司控制区域内的风电场、光伏电站进行仿真模拟,通过统计特征参数的对比分析,验证了所提模型的有效性。 Constructing a model of generated power for intermittent power source accurately and reasonably is of great significance for power system simulation and analysis. A single- and multi-variable Markov chain Monte Carlo (MCMC) method to simulate time series of wind and photovoltaic (PV) power is proposed. Aiming to many types of intermittent power source such as wind farms and PV generation stations, the proposed model constructs Markov chain for time series of generated power and utilizing Gibbs sampling the single- or multi-variable time series simulation is realized. Not only the features and impacting factors of Markov processes for different types of intermittent power sources are overall analyzed, and in the MCMC method the interrelation among multi-variables is considered, thus the proposed model can adapt to the condition that there are interrelations among multi sets of intermittent power sources. The wind farms and PV power plants located in the control areas of two power companies in Germany are simulated, and through the comparative analysis on statistical feature parameters the validity of the proposed model is verified.
出处 《电网技术》 EI CSCD 北大核心 2014年第2期321-327,共7页 Power System Technology
基金 国家重点基础研究发展计划项目(973项目)(2009CB219701) 国家863高技术基金项目(2011AA05A101) 国家自然科学基金重点项目(50937002)~~
关键词 马尔科夫链-蒙特卡罗 风电场 光伏电站 时间序列 相关性 MCMC wind farm photovoltaic plant timeseries correlation
  • 相关文献

参考文献11

  • 1Nicola BarberisNegra,OleHolmstr?m,BirgitteBak‐Jensen,PoulS?rensen.Model of a synthetic wind speed time series generator[J].Wind Energ.2008(2)
  • 2Bernd Kl?ckl,George Papaefthymiou.Multivariate time series models for studies on stochastic generators in power systems[J].Electric Power Systems Research.2009(3)
  • 3J.L. Torres,A. García,M. De Blas,A. De Francisco.Forecast of hourly average wind speed with ARMA models in Navarre (Spain)[J].Solar Energy.2004(1)
  • 4G. Tina,S. Gagliano,S. Raiti.Hybrid solar/wind power system probabilistic modelling for long-term performance assessment[J].Solar Energy.2005(5)
  • 5P.Poggi,G.Notton,M.Muselli,A.Louche.Stochastic study of hourly total solar radiation in Corsica using a Markov model[J].Int J Climatol.2000(14)
  • 6A. Shamshad,M.A. Bawadi,W.M.A. Wan Hussin,T.A. Majid,S.A.M. Sanusi.First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy.2004(5)
  • 7吴俊利,张步涵,王魁.基于Adaboost的BP神经网络改进算法在短期风速预测中的应用[J].电网技术,2012,36(9):221-225. 被引量:62
  • 8石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15. 被引量:122
  • 9Scott Kennedy,Peter Rogers.A Probabilistic Model for Simulating Long-Term Wind-Power Output[J].Wind Engineering.2009(3)
  • 10汪海瑛,白晓民,马纲.并网光伏电站的发电可靠性评估[J].电网技术,2012,36(10):1-5. 被引量:44

二级参考文献66

共引文献290

同被引文献490

引证文献39

二级引证文献518

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部