期刊文献+

基于Contourlet变换和SPIHT算法的彩色医学图像压缩 被引量:18

Colorful Medical Image Compression Based on Contourlet Transform and SPIHT Algorithm
在线阅读 下载PDF
导出
摘要 二维小波变换只能很好地分离不连续点,无法最优表示曲线奇异,同时只能获取有限的方向信息,这大大限制了它在图像处理领域的应用。Contourlet变换则结合拉普拉斯金字塔和方向滤波器组,得到多分辨率、局域、多方向的图像表示。由于基于小波变换的多级树集合分裂排序(SPIHT)算法不能有效表达图像的纹理和轮廓信息,因此提出一种基于Contourlet变换和SPIHT算法的彩色图像压缩方法,并应用于医学图像感兴趣区域压缩。首先将彩色图像转换至YIQ彩色空间;然后选取感兴趣区域,对其采用Contourlet变换提取特征信息,并利用SPIHT算法对Contourlet系数优先编码和传输,从而保证感兴趣区域的图像质量和细节信息。对背景区域则采用小波变换,并通过系数截断的方式提高图像压缩比。实验结果表明,所提算法可以较好地保留感兴趣区域的图像特征,大幅度提高背景区域的压缩比,是一种较实用的图像压缩新方法,在医学图像感兴趣区域压缩中效果良好。 Wavelets two-dimension are good at isolating the discontinuities at edge points, but not the smoothness along the contours. In addition, separable wavelets only capture limited directional information, which is restricted in image processing applications. In comparison, contourlet transform combines Laplacian pyramid (LP) with directional filter bank (DFB) to achieve a flexible multi-resolution, local and directional image expansion based on contour segments. A novel image compression method based on contourlet transform and set partitioning in hierarchical trees (SPIHT) algo- rithm was proposed for colorful medical images, because SPIHT algorithm based on wavelet transform can't express the texture and contour effectively. Firstly, original RGB image is converted to YIQ color space according to the characteris- tics of human visual system. Secondly, contourlet transform is applied to region of interest (ROI) to capture the main characteristics and then SPIHT algorithm is used to guarantee the compressed image quality and detail. For back ground image,wavelet transform is used to improve compression ratio greatly by wavelet coefficients truncation. Experimental results demonstrate that our algorithm is practical and effective for colorful medical images, which is a good balance for compressed image quality and compression ratio.
出处 《计算机科学》 CSCD 北大核心 2014年第1期303-306,共4页 Computer Science
基金 国家自然科学基金项目(61005054) 南通大学2008年度博士科研启动基金(08B15)资助
关键词 CONTOURLET变换 SPIHT 图像压缩 感兴趣区域 医学图像 Contourlet transform, SPIHT, Image compression, Region of interest (ROI), Medical images
  • 相关文献

参考文献14

  • 1Donoho D L, Duncan M R. Digital Curvelet Transform: Strate- gy, Implementation and Experiments [J]. Proceedings of SPIE, 2000,4056:12-30.
  • 2Candes E, Demanet L, Donoho D, et al. Fast Discrete Curvelet Transforms [R]. Technical Report of Applied and Computatio- nal Mathematics. California Institute of Technology, 2005 : 1-43.
  • 3Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J ]. IEEE Transactions on Image Processing, 2005,14(12) : 2091-2106.
  • 4才溪,赵巍.Contourlet变换低通滤波器对图像融合算法影响的讨论[J].自动化学报,2009,35(3):258-266. 被引量:10
  • 5Hua Zhen, Li Ye-wei, Li Jin-jiang. Image Nonlinear Enhance- ment Algorithm Based on Nonsubsampled Contourlet Trans- form [J]. International Journal of Digital Content Technology and Its Applications, 2011,5 (7) : 43-51.
  • 6Li Jin-jiang, Li Ye-wei, An Zhi-yong. Image Denoising A/go- rithm Based on the Nonsubsampled Double Density Contourlet Transform [J]. Journal of Convergence Information Technolo- gy, 2011,6(9) : 105-113.
  • 7Hua Zhen, Li Hong-juan,Li Ye-wei. Remote Sensing Image Fu- sion Algorithm Using Dyadic Contrast Contourlet Transform [J]. International Journal of Advancements in Computing Tech- nology, 2011,3 (7) : 132-140.
  • 8Tamilarasi M,Palanisamy D V. Contourlet Based Medical Image Compression Using Improved EZW, 2009[C]//2009 Interna- tional Conference on Advances in Recent Technologies in Com- munication and Computing. Kottayam, Kerala, India, Oct. 2009 : 800-804.
  • 9Fan Yong-hui,Wang Gang, Liang Xiao. A Static Image Coding Algorithm Based on Contourlet Classified Hidden Markov Tree Model [J]. Engineering Computations, 2011,28(2) : 172-183.
  • 10Bi Xue, Chen Xiang-dong, Zhang Yu, et al. Image Compressed Sensing Based on Wavelet Transform in Contourlet Domain [J]. Signal Processing, 2011,91 (5) : 1085-1092.

二级参考文献14

  • 1杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 2Hassainia F, Magafia I, Langevin F, Kernevez J P. Image fusion by an orthogonal wavelet transform and comparison with other methods. In: Proceedings of the Annual Interna- tional Conference on Engineering in Medicine and Biology Society. New Jersey, USA: IEEE, 1992. 1246-1247.
  • 3Aiazzi B, Alparone L, Baronti S, Garzelli A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2300-2312.
  • 4Ioannidou S, Karathanassi V. Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 166-170.
  • 5Zhang Z, Blum R S. Image fusion for a digital camera application. In: Proceedings of Conference Record of the 32nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove. USA: IEEE, 1998. 603-607.
  • 6Candes E J. Ridgelets: Theory and Applications [Ph.D. dissertation], Stanford University, USA, 1998.
  • 7Candes E J, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. Curve and Surface Fitting. Nashvelle: Vanderbilt University Press, 2000. 105-120.
  • 8Do M Ni Vetterli M. The contourlet transform: efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12): 2091--2106.
  • 9Do M N, Vetterli M. Contourlets: a new directional mul- tiresolution image representation. Beyond Wavelets. New York: Academic Press, 2003. 1-27.
  • 10Miao Q G, Wang B S. A novel image fusion method using contourlet transform. In: Proceedings of International Con- ference on Communications, Circuits and Systems. Guilin, China: IEEE, 2006. 548-552.

共引文献9

同被引文献146

引证文献18

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部