期刊文献+

铝空气电池Al-5Zn-0.02In-1Mg-0.05Ti阳极材料性能研究 被引量:4

Performance of Al-5Zn-0.02In-1Mg-0.05Ti Alloy as Anode Material for Air Battery
原文传递
导出
摘要 研究了基于Al-5Zn-0.02In-1Mg-0.05Ti为阳极材料的铝空气电池在0.6 mol/L NaCl溶液中的放电性能,测试了纯Al、纯Zn及Al-5Zn-0.02In-1Mg-0.05Ti阳极材料的自腐蚀速率、动电位极化曲线及电化学阻抗谱(EIS),利用扫描电镜(SEM)观察了3种材料放电后的腐蚀形貌。结果表明,作为空气电池阳极材料,与纯Al、纯Zn相比,Al-5Zn-0.02In-1Mg-0.05Ti阳极合金能提供更高的工作电势、阳极利用率和电容量。3种材料的自腐蚀速率依次为:Al<Al-5Zn-0.02In-1Mg-0.05Ti<Zn。SEM和EIS结果表明,Al-5Zn-0.02In-1Mg-0.05Ti合金放电后的表面均匀分布着小而浅的腐蚀坑,使合金在放电过程中保持高的活性。 Air batteries consisted of pure A1, pure Zn and A15Zn0.02In 1Mg0.05Ti as anode re spectively and with 0.6 mol/L NaC1 solution as electrolyte were prepared and then their perfor mance was comparatively evaluated by discharge test. Whilst the corrosion behavior of pure A1, pure Zn and AI5ZnO.02In1MgO.O5Ti was studied by measurements of freecorrosion potential and corrosion rate, potentiodynamic polarization curves and electrochemical impedance spectrosco py (EIS). The characteristics ofA15Zn0.02In1Mg0.05Ti alloy after discharge were examined by scanning electron microscopy (SEM). The results show that the air battery based on A15Zn0.02In 1Mg0.05Ti alloy offers higher operating voltage, anodic utilization efficiency and electric capacity rather than those with A1 and Zn. The freecorrosion rates of the three materials can be ranked as AI〈A15Zn0.02InIMg0.05Ti〈Zn. SEM and EIS results show that small and shallow pits distrib ute uniformly on the discharged surface of A15Zn0.02In1Mg0.05Ti alloy, and thus the alloy could keep high discharge activity during discharge.
出处 《腐蚀科学与防护技术》 CAS CSCD 北大核心 2014年第1期25-29,共5页 Corrosion Science and Protection Technology
基金 河南省教育厅科技重点研究项目(12A430007) 河南科技大学大学生研究训练计划(SRTP2012034) 河南科技大学科研创新能力培育基金项目(2012ZCX017)资助
关键词 A1 空气电池 极化曲线 自腐蚀 Key words: aluminum, air battery, polarization curve, free-corrosion
  • 相关文献

参考文献8

二级参考文献126

共引文献87

同被引文献38

  • 1张芳英,朱圣龙,滕英元.氧气在Al(001)面吸附的第一原理研究[J].科学通报,2004,49(16):1687-1690. 被引量:11
  • 2任学佑.铝/空气电池的进展(下)[J].电池,1995,25(1):38-40. 被引量:7
  • 3郝小军,宋诗哲.铝锌合金在3%NaCl溶液中的电化学行为[J].中国腐蚀与防护学报,2005,25(4):213-217. 被引量:18
  • 4Zhuk Z A, Sheindlin E A, Kleymenov V B, et al. Use of low-cost aluminum in electric energy production [J]. J. Power Sour., 2006, 157:921.
  • 5Nestoridi, Pletcher D, Wood R J K, et al. The study of aluminium anodes for high power density Al/air batteries with brine electro-ytes [J]. J. Power Sour., 2008, 178:445.
  • 6Amin M A, Abd E R, Sayed S, et al. Pitting corrosion studies on Al and Al-Zn alloys in SCN- solutions [J]. Electrochim. Acta, 2009, 54:4288.
  • 7Brunner J G, May J, Hoppel H W, et al. Localized corrosion of ultra- fine-grained Al-Mg model alloys [J]. Electrochim. Acta, 2010, 55: 1966.
  • 8Gudic S, Smotjko I, Kliskic M. The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution [J]. J. Alloys Compd., 2010, 505:54.
  • 9Zeng X X, Wang J M, Wang Q L, et al. The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in an alkaline methanol-water solution [J]. Mater. Chem. Phys., 2010, 121:459.
  • 10Flamini D O, Saidman S B, Bessone J B. Influence of the electro- deposition of gallium and zinc onto aluminum on the activation process [J]. Thin Solid Films, 2007, 515:7880.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部