期刊文献+

Boltzmann-Rykov模型的有限体积方法计算 被引量:1

Calculation of Boltzmann-Rykov Model Equation by Finite Volume Method
在线阅读 下载PDF
导出
摘要 构建一种三阶精度的有限体积格式,数值求解考虑转动非平衡影响的Boltzmann-Rykov模型方程.针对模型方程的速度空间离散得到各个离散速度坐标点上彼此独立的控制方程组,运用高阶精度的半离散化有限体积格式在位置空间对离散控制方程进行数值求解,时间项采用三阶Runge-Kutta方法推进,方程右端二体碰撞项采用中心近似技术.该有限体积格式在气体分子对流运动项上具有三阶精度,同时保证了分布函数的正定性和流通量守恒.计算结果与有限差分方法数值模拟结果和连续流区非定常激波管问题的Riemann精确解均吻合较好,说明基于有限体积法的Boltzmann-Rykov模型方程数值求解过程是正确的. A three order precision finite volume scheme was formulated to numerically solve the Boltzmann-Rykov model equation in which rotational energy was considered. This model e- quation was discretized into a series of equations at each discrete velocity point, and then a high order half-discretization finite volume scheme was used to compute these equations. Three order Runge-Kutta method was introduced for time marching, and central value in each cell was taken to approximate the average collision term. This finite volume scheme was of three order precision in convection term, while positive defmiteness of the distribution functions and flux conservation were ensured. Results were compared with those of finite difference method and Riemann exact solution in continuum regime. The good coincidence shows validity of the sol- ving process for the model equation by finite volume method.
出处 《应用数学和力学》 CSCD 北大核心 2014年第2期121-129,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(91016027) 国家重点基础研究发展计划(973计划)(2014CB744100)~~
关键词 Rykov模型方程 统一算法 有限体积方法 Rykov model equation gas kinetic unified algorithm finite volume method
  • 相关文献

参考文献15

  • 1Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Phys Fluids, 1963, 6: 1518-1519.
  • 2Filbet F, Russo G. High order numerical methods for the space non-homogeneous Boltzmann equation[J].Journal of Computational Physics, 2003, 186( 2) : 457-480.
  • 3李志辉,吴振宇.阿波罗指令舱稀薄气体动力学特征的蒙特卡罗数值模拟[J].空气动力学学报,1996,14(2):230-233. 被引量:19
  • 4Mieussens L. Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynarnicsJ J]. Mathematical Models and Methods in Applied Sciences, 2000, 10(8): 1121- 1150.
  • 5Bird G A. Molecular Gas Dynamics[M]. Oxford: Clarendon Press, 1976.
  • 6沈青.DSMC方法与稀薄气流计算的发展[J].力学进展,1996,26(1):1-13. 被引量:26
  • 7Bobylev A V, Cergignani C. Exact eternal solutions of the Boltzmann equation[J].Journal of Statistical Physics, 2002, 106( 5/6): 1019-1038.
  • 8Kolobov V I, Bayyuk S A. Construction of a unified continuum/kinetic solver for aerodynamic problems[J].Journal of Spacecraft and Rockets, 2005, 42( 4) : 598-606.
  • 9Cheremisin F G, Agarwal R K. Computation of hypersonic shock structure in diatomic gases with rotational and vibrational relaxation using the generalized Boltzmann equation[CJ / / 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008. doi , 10.2514/6.2008-1269.
  • 10LI Zhi-hui, ZHANG Han-xin, Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J].Journal of Computational Physics, 2004, 193( 2) : 708-738.

二级参考文献14

  • 1张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165.
  • 2沈青,第五届全国流体力学学术会议,1995年
  • 3Fan J,Rarefied Gas Dynamics.Vol.1,1995年
  • 4Shen C,Rarefied Gas Dynamics.Vol.1,1995年
  • 5Shen C,Progress in Astron and Aeron,1994年,159卷,234页
  • 6Shen C,1991年
  • 7Zhong X,1991年
  • 8Xu K,Von Karman Institute for Fluid Dynamics Lecture Series,1998年
  • 9Deng Z T,33rd Aerospace Science Meeting and Exhibit,1995年,912页
  • 10Yang J Y,J Comput Phys,1995年,120期,323页

共引文献59

同被引文献21

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部