期刊文献+

Co、Ni-锯齿型石墨烯纳米带体系的磁性与电子结构研究

Research on Magnetism and Electronic Structure of Co and Ni-Zigzag Graphene Nanoribbon System
在线阅读 下载PDF
导出
摘要 采用自旋极化的密度泛函理论计算方法研究Co、Ni吸附的锯齿型石墨烯纳米带(n=6,8,10)的几何构型、电子结构与磁性。在真空环境里,吸附过渡金属面后,锯齿型石墨烯纳米带发生弯曲,金属面大多不平整,且在n=8,10的锯齿型石墨烯纳米带上Co、Ni原子倾向于团聚成立体团簇。所有的Co、Ni-锯齿型石墨烯纳米带体系都是金属性的。计算结果表明,石墨烯纳米带的类一维性和边界形状将影响多个金属原子吸附后的堆积构型,同时锯齿型石墨烯纳米带作为吸附底物使吸附的过渡金属产生与无基底支持的二维、三维金属体系和石墨基底上吸附的过渡金属不同的磁性。 This paper studies the geometrical configuration, electronic structure and magnetism of Co and Ni-zigzag graphene nanoribbons(n=6, 8, 10) with density functional theory computing method of spin poIarization. In vacuum environment, after adsorbing transition metal surface, zigzag graphene nanorib- bons bend. Most metal surfaces are not smooth and Co and Ni atoms on zigzag graphene nanoribbons(n= 8 and 10) tend to form aggregate cluster. All Co and Ni-zigzag graphene nanoribbon systems are metallic. The computing result shows that single-dimension property and edge contour of graphene nanoribbons will influence the stack configuration after the adsorption of multiple metal atoms. Meanwhile, as adsorption substrate, zigzag graphene nanoribbons make adsorbed transition metal produce magnetism different from two-dimensional and three-dimensional metal systems without substrate support and transition metal ad- sorbed on graphite substrate.
出处 《浙江理工大学学报(自然科学版)》 2014年第1期98-101,106,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 锯齿型石墨烯纳米带 3d过渡金属 密度泛函理论 磁性 电子结构 VASP zigzag graphene nanoribbons 3d transition metal density functional theory magnetism electronic structure VASP
  • 相关文献

参考文献11

  • 1Young W S,Marvin L C,Steven G L. Energy gaps in graphene nanoribbons[J].Physical Review Letters,2006,(21):216803:1-216803:4.
  • 2Longo R C,Carrete J,Gallego L J. Ab initio study of 3d,4d,and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons[J].Physical Review B:Condensed Matter,2011,(23):1-9.
  • 3Kan E J,Xiang H J,Yang J L. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons:a first-principles study[J].Journal of Chemical Physics,2007,(16):1-5.
  • 4Krüger P,Rakotomahevitra A,Parlebas J C. Magnetism of epitaxial 3d-transition-metal monolayers on graphite[J].Physical Review B:Condensed Matter,1998,(09):5276-5280.
  • 5Zanella I,Fagan S B,Mota R. Electronic and magnetic properties of Ti and Fe on graphene[J].J Phys Chem C,2008,(25):9163-9167.
  • 6Uchoa B,Lin C Y,Neto A C. Tailoring graphene with metals on top[J].Physical Review B:Condensed Matter,2008,(03):1-5.
  • 7Zhou J,Wang L,Qin R. Structure and electronic and transport properties of transition metal intercalated graphene and graphene-hexagonal-Boron-Nitride bilayer[J].J Phys Chem C,2011,(51):25273-25280.
  • 8Perdew J P,Chevary J A,Vosko S H. Atoms,molecules,solids,and surfaces:applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B:Condensed Matter,1992,(11):6671-6687.
  • 9Perdew J P,Burke K,Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters,1996,(18):3865-3868.
  • 10Moruzzi V,Marcus P. Magnetism in bcc 3d transition metals:onset and approach to the Hund's-rule limit[J].Physical Review B:Condensed Matter,1998,(03):1613-1620.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部