期刊文献+

基于面部肌肉特征的面部表情度量方法

Facial expression measurement method based on a facial muscle feature
在线阅读 下载PDF
导出
摘要 基于对人类表情肌活动效果的归纳,采用一种新的面部特征构造描述面部状态。以支持向量机的后验概率作为依据,提出一种基于面部肌肉特征的面部表情度量方法,并对基于不同特征和不同面部素材库的决策模型进行对比实验。结果表明,相比其他的方法,基于新特征的度量方法能够对不同的面部表情产生具有足够区分度的度量,并能够以较高的准确率提取视频文件中"最夸张"的表情。 A new facial feature produced from a set of primitive feature new feature are proposed. Development of the new feature is based points and a facial expression scoring method based on the on the summarization of human facial muscle movement effects. And the scoring method uses posteriori produced by SVM as the foundation of the scoring results. In the experiment, be- sides facial muscle feature, positions of the primitive feature points as a whole feature vector are added as a comparison, as well as different decision-making models and different sources of testing set. Based on the new feature the scoring system provides e- nough distinguishing scoring results on expressions of different intensities, and extracts 'the most intensive' expression frame from videos with a rather high accuracy.
出处 《中国科技论文》 CAS 北大核心 2013年第10期1011-1016,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(61003205)
关键词 计算机应用技术 面部表情度量 面部肌肉特征 支持向量机 technology of computer application facial expression measurement facial muscle features support vector machine
  • 相关文献

参考文献8

二级参考文献29

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3胡国胜.支持向量机算法及应用[J].现代电子技术,2005,28(3):106-109. 被引量:21
  • 4陈羽,赖剑煌.基于多分类器融合的人脸识别方法[J].中山大学学报(自然科学版),2006,45(4):24-27. 被引量:5
  • 5ZHENG Qiu-mei, WANG Hong-xia. Image retrieval algorithm based on vector transferring and clustering [ J ]. Journal of Computational Information Systems, 2009,5 (2) : 1009-1016.
  • 6ZHENG Qiu-mei, SHI Gong-xi, LU Xing-hui. A robust digital watermarking scheme based on integer wavelet using compound encryption[ C ]//Proceedings of 2009 4th International Conference on Computer Science & Education, Nanning, China, July 25-28, 2009. Piscataway, NJ, USA: IEEE, 2009:716-719.
  • 7ZHI Ruicong, RUN Qiuqi. Facial expression recognition based on two-dimensional discriminant locality preserving projections [ J ]. Neurocomputing, 2008,71 (7/9) : 1730- 1734.
  • 8ZI-IENG Qiu-mei, LU Xing-bui, SHI Gong-xi. EDA-based optimal gabor kernel's scale and orientation selection for facial expression recognition [ C ]//Proceedings of 2009 4th International Conference on Computer Science & Education, Nanning, China, July 25-28, 2009. Piscataway, N J,USA: IEEE, 2009:113-117.
  • 9Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with Gabor wavelets[A]. Third IEEE ConfFace and Gesture Recognition [C] . 1998,200-205.
  • 10Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 ( 12 ) :1357-1362.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部