期刊文献+

基于友邻-用户模型的微博主题推荐研究 被引量:7

Research on themes recommendation in micro-blogging scenario based on neighbor-user profile
原文传递
导出
摘要 在微博社交网络中,微博文本内容短小,主题覆盖较少,同时主题变化快,用户兴趣更新频繁。已有用户模型不能完全准确刻画微博用户变化的兴趣。友邻集由用户认知度高的群体组成,友邻集的主题兴趣可以全面反映目标用户的多样化兴趣。利用目标用户的友邻集,在本体用户模型上构建微博用户的友邻主题兴趣集,计算更新友邻主题兴趣度,提出友邻-用户模型的实现算法。实验表明,在微博社交网络平台中,友邻-用户模型的微博主题推荐精度要优于传统的用户模型。 In micro-blogging social network, micro-blog content is short text and covered less themes. In addition, themes in network changed fast and user's interests updated frequently. Existing user profile can't accurately depict vari- ous interests of user. Group of users with high awareness can form neighbor set of user, whose topic interests can com- prehensively reflect diverse interests of target user. A neighbor-user profile implementing algorithm was proposed by building neighbor theme interest set of ontology user profile and calculating update of neighbor theme interest degree of ontology user profile in terms of neighbor set of target user. Experiments show that the accuracy of micro-blogging themes recommendation based on neighbor-user profile performs better than that of traditional individual user profile in the micro-blogging social network platform.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第11期59-65,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61103067 61303096) 上海市大学生创新创业资助项目(CXSJ12-602)
关键词 用户模型 本体 友邻-用户模型 微博 user profile ontology neighbor-user profile micro-blogging
  • 相关文献

参考文献17

  • 1NAVIGLI R, VELARDI P, GANGEMI A. Ontology learning and its application to automated terminology translation [J]. Intelligent Systems, 2003, 18 ( 1 ) : 22- 31.
  • 2SHEHATA S, KARRAY F, KAMEL M. Enhancing search engine quality using concept-based text retrieval [C]//Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. Washington: IEEE Computer Society, 2007:26-32.
  • 3TAO Xiaohui, LI Yuefeng, ZHONG Ning. A personalized ontology model for web information gathering [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(4) :496-511.
  • 4LI Yuefeng, ZHONG Ning, Mining ontology for automat- ically acquiring web user information needs [J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(4) :554-568.
  • 5JIANG Yuncheng, TANG Yong, WANG Ju, et al. Representation and reasoning of context-dependant knowledge in distributed fuzzy ontologies [J]. Expert Systems with Applications, 2010, 37 ( 8 ) : 6052-6060.
  • 6ZHAO Xin, JIANG Jing, HE Jing, et al. Topical key phrase extraction from twitter [ C ]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Portland, Oregon: [ s. n. ], 2011 : 379- 388.
  • 7CHENG Xueqi, SHEN Huawei. Uncovering the community structure associated with the diffusion dynamics on networks [J].Journal of Statistical Mechanics : Theory and Experiment, 2010(4) :P04024 : 1-10.
  • 8LI Zhichao, ZHANG Min, MA Shaoping, et al, Automatic extraction for product feature words from comments on the web [C]//Proceedings of the 5 th Asia Information Retrieval Symposium on Information Retrieval Technology. Berlin-Heidelberg : Springer-Verlag, 2009, 5839 : 112-123.
  • 9RAY S K, SINGH S. Blog content based recommenda- tion framework using wordnet and multiple ontologies [C]//Proceedings of 2010 International Conference on Computer Information Systems and Industrial Manage- ment Applications (CISIM). Washington : IEEE Com- puter Society, 2010:432-437.
  • 10Marcelo G.Armentano,Daniela Godoy,Analía Amandi.Topology-Based Recommendation of Users in Micro-Blogging Communities[J].Journal of Computer Science & Technology,2012,27(3):624-634. 被引量:8

二级参考文献21

  • 1Java A, Song X, Finin T, Tseng B. Why we twitter: Un- derstanding microblogging usage and communities. In Proc. WebKDD/SNA-KDD, Aug. 2007, pp.56-65.
  • 2Krishnamurthy B, Gill P, Arlitt M. A few chirps about twit- ter. In Proc. WOSP, Aug. 2008, pp.19-24.
  • 3Weng J, Lim E P, Jiang J, He Q. TwitterRank: Finding topic- sensitive influential twitterers. In Proc. WSDM, Feb. 2010, pp.261-270.
  • 4Yamaguchi Y, Takahashi T, Amagasa T, Kitagawa H. TU- Rank: Twitter user ranking based on user-tweet graph analy- sis. In Proe. the 11th Int. Conf. Web In formation Systems Engineering, Dec. 2010, pp.240-253.
  • 5Chen J, Nairn R, Nelson L, Bernstein M, Chi E. Short and tweet: Experiments on recommending content from informa- tion streams. In Proc. CHI, April 2010, pp.1185-1194.
  • 6Phelan O, McCarthy K, Smyth B. Using twitter to recom- mend real-time topical news. In Proc. RecSys, 2009, pp.385= 388.
  • 7Esparza S G, O'Mahony M P, Smyth B. On the real-time web as a source of recommendation knowledge. In Proc. RecSys, Sept. 2010, pp.305-308.
  • 8Harmon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches. In Proc. RecSys, Sept. 2010, pp.199-206.
  • 9Guy I, Ronen I, Wilcox E. Do you know?: Recommending people to invite into your social network. In PT"oc. IUI, Feb. 2009, pp.77-86.
  • 10Liben-Nowell D, Kleinberg J. The link prediction problem for social networks. In Proc. CIKM, Nov. 2003, pp.556-559.

共引文献7

同被引文献114

引证文献7

二级引证文献287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部