摘要
Background Neuropathic pain results from a lesion or disease affecting the somatosensory system at either the peripheral or central level. The transmission of nociception within the central nervous system is subject to modulation by release and reuptake of neurotransmitters, which maintain a dynamic balance through the assembly and disassembly of the SNARE complex as well as a series of neurotransmitter transporters (inhibitory GABA transporters GAT and excitatory glutamate transporters GT). Neuronal hyper-excitability or defected inhibition involved in neuropathic pain is one of the outcomes caused by imbalanced neurotransmission. SNAP-25, which is one of the SNARE complexes, can modulate the release of neurotransmitters. Glia glutamate transporter (GLT) is one of the two glutamate transporters which account for most synaptic glutamate uptake in the CNS. The role of SNAP-25 and GLT as well as GAT is not clearly understood.
Background Neuropathic pain results from a lesion or disease affecting the somatosensory system at either the peripheral or central level. The transmission of nociception within the central nervous system is subject to modulation by release and reuptake of neurotransmitters, which maintain a dynamic balance through the assembly and disassembly of the SNARE complex as well as a series of neurotransmitter transporters (inhibitory GABA transporters GAT and excitatory glutamate transporters GT). Neuronal hyper-excitability or defected inhibition involved in neuropathic pain is one of the outcomes caused by imbalanced neurotransmission. SNAP-25, which is one of the SNARE complexes, can modulate the release of neurotransmitters. Glia glutamate transporter (GLT) is one of the two glutamate transporters which account for most synaptic glutamate uptake in the CNS. The role of SNAP-25 and GLT as well as GAT is not clearly understood.
基金
This work was supported by a grant from the National Natural Science Foundation of China (No. 81171053).