期刊文献+

Assimilation of surface currents into a regional model over Qingdao coastal waters of China 被引量:3

Assimilation of surface currents into a regional model over Qingdao coastal waters of China
在线阅读 下载PDF
导出
摘要 Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters. Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第7期21-28,共8页 海洋学报(英文版)
基金 The National High Technology Research and Development Program of China under contract No.2007AA09Z117 the Science and Technology Project of the North China Sea Brach of SOA under contract No.2012A01 the Joint BMBF-WTZ Project of China under contract No. CHN 09/031
关键词 Qingdao coastal waters surface currents Ensemble Kalman filter Finite Volume Coastal OceanModel (FVCOM) Qingdao coastal waters, surface currents, Ensemble Kalman filter, Finite Volume Coastal OceanModel (FVCOM)
  • 相关文献

参考文献3

二级参考文献3

共引文献57

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部