期刊文献+

基于距离重构的无线传感器网络多维定标定位算法 被引量:11

The Multidimensional Scaling Positioning Algorithm for Wireless Sensor Networks Based on Distance Reconstruction
在线阅读 下载PDF
导出
摘要 无线传感器网络中基于多维定标的定位算法通常采用最短路径代替距离矩阵中的未知项,会导致较大的定位误差。针对这一问题,提出一种基于距离矩阵重构的无线传感器网络多维定标定位算法DR-MDS。算法利用节点间的公共邻居信息对距离矩阵线性重构,计算距离矩阵中的未知项,然后对重构的距离矩阵运用双中心化并进行特征分解,从而求得网络坐标。由于算法能够更为准确的获得网络节点之间的空间相对关系,并充分利用其空间相关性计算节点相对坐标,可获得较好的定位效果。仿真结果表明,本文提出的DR-MDS算法与MDS-MAP、ISOMAP相比定位精度更高,误差范围更小。 The multidimensional scaling (MDS) positioning algorithms of wireless sensor networks usually calculate the unknown items of the distance matrix by the shortest path, which may result in large positioning errors. To solve this problem,we propose the multidimensional scaling localization algorithm based on distance reconstruction (DR-MDS). The algorithm uses the common neighbor information between nodes for distance matrix reconstruction, which can effectively calculate the unknown. Then, we calculate the coordinates by making full use of the spatial correlation between all nodes. Simulation results show that the proposed DR-MDS algorithm get higher positioning accuracy and lower error range compared to the MDS-MAP and ISOMAP.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第9期1284-1287,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61301092) 西安市科技计划项目(CX1255)
关键词 无线传感器网络 定位 多维定标 距离重构 wireless sensor networks positioning algorithm multidimensional scaling distance reconstruction
  • 相关文献

参考文献12

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2Shang Y,Ruml W,Zhang Y,et al. Localization from Mere Connectivity in Sensor Networks[C//Pl' of the 4th ACM Int'l Syrup on Mobile Ad Htx' Networking and Computing. New York :ACM Press,2003. 201 -212.
  • 3Shang Y, Rural W, Zhang Y. Localization from Connectivity in Sensor Networks [ J 1. 1EEE Trans on Parallel and Distributed Systems,2004,15 ( 11 ) :961-973.
  • 4Costa J A,Patwari N,Hero A O,et al. Distributed Weighted Multi- dimensional Scaling for Node Localization in Sensor Networks[ J]. ACM Trans on Sensor Networks,2006,2( 1 ) :39-64.
  • 5韩双霞,张露,范一鸣,陈江富.WSN中改进的分布式多维定标定位算法[J].传感技术学报,2009,22(5):728-733. 被引量:4
  • 6Gopakumar Aloor, Lillykutty Jacob. Distributed Wireless Sensor Network Localization Using Stochastic Proximity Embedding[ J ]. Computer Communications,2010,33 ( 6 ) :745-755.
  • 7周祖德,胡鹏,刘泉,李方敏.一种基于MDS的无线传感器网络快速定位算法[J].传感技术学报,2007,20(10):2303-2307. 被引量:16
  • 8Chan F,So H C. Efficient Weighted Muhidimensional Scaling for Wireless Sensor Network Ixcalization [ J ]. IEEE Trans on Signal Processing,2009,57 ( 11 ) :4548-4553.
  • 9陈岁生,卢建刚,楼晓春.基于MDS-MAP和非线性滤波的WSN定位算法[J].浙江大学学报(工学版),2012,46(5):866-872. 被引量:16
  • 10Wang Chengqun,Chen Jiming,Sun Youxian,et al. Wireless Sensor Networks Loealization with Isomap [ C ]//Proc of IEEE International Conference on Cnmmanieations,lEEE [CC 2009.

二级参考文献78

  • 1于宁,万江文,吴银锋.无线传感器网络定位算法研究[J].传感技术学报,2007,20(1):187-192. 被引量:51
  • 2Akyildiz IF, Su W, Sankarasubramaniam Y. Wireless Sensor Networks:a Survey[J]. Computer Network,2002 , 38:393- 422.
  • 3Yi Shang, Jing Meng and Shi Hongchi. A New Algorithm for Relative Localization in Wireless Sensor Networks[C]// Proceedings of the 18th International Parallel and Distributed Processing Symposium(IPDPS' 04), 2004. 26-30:24.
  • 4Shang Yi, Ruml Wheeler, Zhang Ying, etal. Localization from Mere Connectivity[C]// New York:ACM Press in proceedings of the Fourth ACM Symposium on Mobile AdHoc Networking and Computing (MobiHoc), ACM Press, 2003. 201-212.
  • 5Simon Wong K F, Tsang Ivor W, Victor Cheung, Gary Chan S H, James T. Kwok. Position Estimation for Wireless Sensor Networks[J]. IEEE Globecom 2005. 5:2772-2776.
  • 6Theodore S Rappaport. Wireless Communieations:Prineiples and Praetce [M]. 2nd Edition. New Jersey : Prentiee Hall, 2001. 190-218.
  • 7[3]Yi Shang,Ruml W.,Ying Zhang,et al.Localization from Mere Connectivity[C]// MobiHoc'03,Annapolis,Maryland,USA,2003:201-210.
  • 8[4]Yi Shang,Ruml W.Improved MDS-Based Localization[C]// INFOCOM'04,Hong Kong,China,2004:2640-2651.
  • 9[5]Cheung K W,So H C.A Multidimensional Scaling Framework for Mobile Location Using Time-of-Arrival Measurements[J].IEEE Transactions on signal processing,2005,53(2):460-570.
  • 10[6]Vin de Silva,Joshua B.Tenenbaum.Global Versus Local Methods in Nonlinear Dimensionality Reduction.Neural Information Processing Systems 15 (NIPS'02)[C]// Vancouver,Canada,2003:705-712.

共引文献702

同被引文献86

引证文献11

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部