期刊文献+

石墨烯/硅负极材料的制备及其电化学性能的研究 被引量:8

Synthesis and electrochemical performance of the graphene/Si as the lithium ion batteries anode
在线阅读 下载PDF
导出
摘要 通过将亚微米硅与石墨烯进行原位还原复合(SG1)和机械混合(SG2)这2种方式制备了不同的石墨烯/硅复合锂离子电池负极材料。SEM结果显示,2种复合物中硅颗粒都被石墨烯片层所包夹,且分散均匀;充放电测试表明,这2种复合方式均使复合电极的首次容量损失大大减小,循环稳定性得到很大提高,其首次放电比容量分别为2 070.5mAh/g和1 534.2mAh/g,循环12次后均保持在1 000mAh/g以上;通过EIS阻抗谱对硅复合电极的导电性以及电极结构的初步研究,发现复合电极本身导电性以及材料的电接触性远优于纯硅,电极结构也相对稳定。 Graphene/Si composites used for lithium-ion battery anode have been prepared via the re duction in situ (SG1) and mechanical mixing (SG2) methods. SEM and TEM results showed that in such two composites, silicon particles were sandwiched and dispersed in graphene layers uniformly. Charge-discharge tests revealed that the two composites significantly reduced the capacity loss for the first time and enhanced the cycling stability. After 12 cycles, the discharge was maintained above 1 000 mAh/g with the initial capacity of 2 070. 5 mAh/g and 1 534. 2 mAh/g respectly. Meanwhile, electro chemical impedance spectroscopy (EIS) was used to study the conductivity of the composite electrode and the change of electrode structure. The results demonstrated that the conductivity of composite e lectrode itself and electrical contact in the composites were far better than those of nature silicon,and the composite electrode maintained the structural integrity.
出处 《化工科技》 CAS 2013年第5期17-23,共7页 Science & Technology in Chemical Industry
关键词 石墨烯 复合 锂离子电池负极 循环性能 导电性 Graphene/Si Composite Lithium-ion battery anode Cycling stability Conductivity
  • 相关文献

参考文献26

  • 1l)unn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices [J]. Science, 2011, 334 (6058) : 928-935.
  • 2Scosati t3, Garche J. Lithium batleries: status, prospects and future[J]. Journal of Power Exmrces, 2010, 195 (9) : 2419- 2430.
  • 3W J Zhang. A review of the electrochemical performance of alloy anodes for lithium ion batteries[J]. Journal of Power Sources, 2011,196 ( 1 ) : 13- 24.
  • 4Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-sili- eonhasedinsert ion anodes f or Iithium-ion secondary cells [J]. Journal of Power Sources, 2007,163(2) : 1003-1039.
  • 5Murugesan S, Harris J T, Korgel B A, et al. Copper-coated amorphous silicon particles as an anode material for lithiurn~ ion batteries [J]. Chemistry Materials, 2012,24 (7) : 1306- 1315.
  • 6YIN YaXia,WAN LiJun,GUO YuGuo.Silicon-based nanomaterials for lithium-ion batteries[J].Chinese Science Bulletin,2012,57(32):4104-4110. 被引量:18
  • 7Hatchard T D,Dahn J R. In situ XRD and elect rochemical studyof the react ion of lithium with amorphous silicon [J]. Journal of The Electrochemical Society,2004,151 (6) : 838- 842.
  • 8D Y Chen, X Mei, G Ji, et al. Reversible lithiumion storage in silve~treated nanoscale hollow porous silicon particles [J]. Angewandte Chemic International Edition, 2012, 51 (10):2409- 2413.
  • 9Howe J Y,Burton D J,Qi Y silicon/carbon nanofiher composites as a Li battery anode [J]. Journal of Power Sources, 2013,221 : 455-461.
  • 10Hatchard T D, Obrovac M N, Dahn J R. A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with Li3[J]. Journal of The Electrochemical Society, 2006, 153 (2):282-287.

二级参考文献43

  • 1AricQ A S, Bruce P G, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366-377.
  • 2Wu X L, Jiang L Y, Cao F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv Mater, 2009.21 : 2710-2714.
  • 3Yuan L X, Wang Z H. Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci, 2011,4:269-284.
  • 4Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 2008, 20:1160-1165.
  • 5Xin S, Guo Y G, Wan L J. Electrode materials for lithium secondary batteries with high energy densities (in Chinese). Sci China China, 2011,41:1229-1239.
  • 6Guo Y G, Hu J S, Wan L J. Nanostt'uctured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008,20:2878-2887.
  • 7Li H, Wang Z X, Chert L Q, et al. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21:4593-4607.
  • 8Huggins R A. Lithium alloy negative electrodes. J Power Sources, 1999, 81:13-19.
  • 9Li H, Huang X, Chert L Q, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett, 1999, 2:547-549.
  • 10Ma H, Cheng F, Chen J, et al. Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater, 2007, 19:4067-4070.

共引文献17

同被引文献106

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部