期刊文献+

可充镁电池正极材料PTMA/石墨烯(英文) 被引量:4

PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries
在线阅读 下载PDF
导出
摘要 本文制备了聚4-甲基丙烯酸-2,2,6,6-四甲基哌啶-1-氮氧自由基酯(PTMA)/石墨烯纳米复合材料,并报道了其作为可充镁电池正极材料的电化学性能.通过傅里叶变换红外(FTIR)光谱、扫描电镜(SEM)、透射电镜(TEM)表征复合材料的结构和形貌;循环伏安和恒电流充放电测试其电化学性能.粒径10 nm左右的PTMA颗粒分散在具有导电作用的石墨烯表面;在"一代"电解液Mg(AlCl2BuEt)2/四氢呋喃(THF)(0.25 mol L-1)中,22.8mA g-1充放电电流密度下,PTMA/石墨烯复合材料的起始放电容量可达到81.2 mAh g-1.研究结果表明,含有自由基的有机化合物可以作为可充镁电池的一类新型正极材料,可以进一步通过使用具有高氧化分解电压的电解液来提高其放电容量. We report the synthesis of a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)t graphene nanocomposite in which graphene is used as a support for improving electronic conductivity, The structure and morphology of the nanocomposite were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), These results reveal that a graphene surface is decorated by nanoparticles of PTMA with an average size of 10 nm. The electrochemical performance of the PTMA/graphene composite as a cathode material in rechargeable magnesium batteries was investigated using cyclic voltammetry and galvanostatic charge/ discharge techniques. In a "first generation" electrolyte Mg(AICI2BuEt)Jtetrahydrofuran (THF) (0.25 tool. L-Z), the material exhibits an initial discharge capacity of 81.2 mAh. g^-1 at 22.8 mA. g^-1. Further studies will focus on improving the capacity using electrolytes with a wider electrochemical window.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第11期2295-2299,共5页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(21273147) Shanghai Municipal Science and Technology Commission,China(11JC1405700)~~
关键词 能量储存和转换 可充镁电池 纳米复合物 有机正极材料 石墨烯 Energy storage and conversion Rechargeable magnesium battery Nanocomposite Organic cathode material Graphene
  • 相关文献

参考文献25

  • 1Song, Z. P.; Zhan, H.; Zhou, Y. H.Angew. Chem. lnt. Edit. 2010,49, 8444. doi: 10.lO02/anie.201002439.
  • 2Chen, H,; Armand, M.; Courty, M.; Jiang, M.; Grey, C. E; Dolhem, F.; Tarascon, J. M.; Poizot, P. J. Am. Chem. Soc. 2009, 131, 8984. doi: 10.1021/ja9024897.
  • 3Tarascon, J. M. ChemSusChem 2008, 1,777. doi: 10.1002/cssc. v1:8/9.
  • 4Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Pibire, P.; Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. doi: 10.1038/nmat2372.
  • 5Armand, M.; Tarascon, J. M. Nature 2008, 451,652. doi: 10.1038/451652a.
  • 6Poizot, P.; Dolhem, F. Energy Environ. Sci. 2011, 4, 2003. doi: 10.1039/c0ee0073 le.
  • 7Gao, X. P.; Yang, H. X. Energy Environ. Sci. 2010, 3, 174. doi: 10.1039/b916098a.
  • 8Novik, P.; Miiller, K.; Santhanam, K. S. V.; Hass, O. Chem. Rev. 1997, 97, 207. doi: 10.1021/cr941181o.
  • 9Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Nature 1995, 373, 598. doi: 10.1038/373598a0.
  • 10Song, Z. P.; Zhan, H.; Zhou, Y. H. Chem. Commun. 2009, 448.

同被引文献12

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部