期刊文献+

基于Isomap降维的噪声处理算法 被引量:1

Noise Processing Algorithm Based on Isomap Reducing Dimensionality
在线阅读 下载PDF
导出
摘要 由于非线性降维方法对高维数据中存在的噪声比较敏感,导致最终的分类效果比较差.为了弥补其不足,在首先使用极大似然估计方法估测出样本数据本征维度的前提下,提出一种结合等距特征映射与主成分分析的方法.一方面能够使原始数据保持其在高维空间的几何结构,另一方面可以消除噪声对降维结果的影响,最终使得低维数据尽可能的保持原始样本数据集的内在特征.通过实验论证表明,该组合方法的效果比单独直接使用等距特征映射和主成分分析算法的效果都要好. Nonlinear dimensionality reduction method is more sensitive to the noise in the high-dimensional data, resulting in relatively poor final results of classification. In order to make up for its shortcomings, this paper proposes a method in the premise of using the maximum likelihood estimation method to estimate the intrinsic dimension of the sample data, which combines the isomapetric mapping with the principal component analysis. On the one hand, the method enables the original data to maintain its geometry in the high dimensional space, on the other hand, the method can eliminate the influence of noise on the dimensionality reduction results, eventually making the low-dimensional data as much as possible to maintain inherent characteristics of the original sample data sets. Experimental demonstrations show that the results of combination method is better than separate isometric mapping and separate principal component analysis.
作者 屈治礼
出处 《计算机系统应用》 2013年第11期110-114,94,共6页 Computer Systems & Applications
关键词 等距特征映射 极大似然估计 高维数据 噪声 isomapetric mapping maximum likelihood estimation high-dimensional data noise
  • 相关文献

参考文献10

  • 1Tenenbaum JB, Silva V,Landford JC. A global geometricframework for nonlinear dimensionality reduction. Science,2000,290(22): 2319-2323.
  • 2余肖生,周宁.高维数据降维方法研究[J].情报科学,2007,25(8):1248-1251. 被引量:23
  • 3Roweis ST, Saul LK. Nonlinear dimensionality reduction bylocally linear embedding. Science, 2000,290 (5500):2323-2326.
  • 4Belkin M,Niyogi P. Loclacian eigenmaps for dimension-nalityreduction and data representation. Neural Computation, 2003,15(6): 1373—1396.
  • 5Park JH,Zhang ZY,Zha HY. Local linear smoothing fornonlinear manifold learning. IEEE Computer SocietyConference on CVPR. Washington DC. 2004,2:452-459.
  • 6Telling H. Analysis of a complex statistical variable into.principal components. Journal of Educational Psychology, 1933, 24: 417-441.
  • 7Turk Mand Pentland A. Eigcnfaces for recognition. J.Cognitive Neuroscicnce,1991,3(1): 71-86.
  • 8雷君虎,杨家红,钟坚成,王苏卫.基于PCA和平行坐标的高维数据可视化[J].计算机工程,2011,37(1):48-50. 被引量:12
  • 9Verleyse M. Learning high-dimension data. Limitations andFuture Trends in Neural Computation. Amsterdam. TheNetherlands, IOS Press. 2003. 141-162.
  • 10Kegl B. Intrinsic dimension estimation using packingnumbers.http://books.nips.cc/papers /files/nipsl 5/AA25.pdf.

二级参考文献15

  • 1Johansson J, Treloar R, Jern M. Integration of Unsupervised Clustering, Interaction and Parallel Coordinates for the Exploration of Large Multivariate Data[C]//Proc. of 1EEE Symposium on Information Visualization. [S. l.]: IEEE Computer Press, 2004.
  • 2Yuan Xiaoru, Guo Peihong, Xiao He, et al. Scattering Points in Parallel Coordinates[J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(6): 1001-1008.
  • 3.http://www.cit.fudan.edu.cn/research/www-dmgp/ppt/GWWJ.doc,2006-03-20.
  • 4Samarasena B.,et al.Dimensionality Reduction of Face Images for Gender Classification[EB/OL].http://homepages.feis herts.ac.uk/~nngroup/pubs/papers/Buchala-IS04.pdf,2006-03-20.
  • 5Lespinats,S.,Giron,A.& Fertil B.Visualization and exploration of high-dimensional data using a "force directed placement" method:application to the analysis of genomic signatures[EB/OL].http://asmda2005.enst-bretagne.fr/IMG/pdf/proceedings/230.pdf,2006-03-24.
  • 6.http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html,2006-03-24.
  • 7Tenenbaum,J.B.,de Silva,V.& Langford,J.C A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,(290):2319-2323.
  • 8Silva,V.& Tenenbaum,J.B.Global versus local methods in nonlinear dimensionality reduction[EB/OL].http://web.mit.edu/cocosci/Papers/nips02-localglobal-in-press.pdf,2006-03-24.
  • 9Roweis,S.& Saul,L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000(290):2323-2326.
  • 10.http://www.pami.sjtu.edu.cn/people/xzj/introducelle.htm,2006-03-24.

共引文献33

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部