期刊文献+

两点边值问题非均匀网格二阶有限体积方法的外推 被引量:3

The Extrapolation on Second Order Finite Volume Method with Nonuniform Mesh for Two Point Boundary Value Problems
在线阅读 下载PDF
导出
摘要 本文针对两点第三边值问题提出非均匀网格二阶有限体积格式的Richardson外推法,导出二阶有限体积格式截断误差的积分形式.通过构造有限体积格式的辅助方程,证明外推法按照离散L2范数,H1半范数,最大范数具有四阶精度.数值算例验证了理论分析的正确性,并说明了外推法的有效性. In this paper, Richardson extrapolation of second-order finite volume scheme on nonuniform mesh is presented for two point boundary value problem of third kind and the truncation errors with integral form are derived. By constructing auxiliary equations corresponding to the finite volume scheme, we .prove that the extrapolation is convergent with fourth order accuracy with respect to discrete L^2, norm, H1 semi-norm and maximum norm. A numerical example verifies the correctness of the theoretical analysis and also shows the effectiveness of the extrapolation.
作者 王凤 王同科
出处 《应用数学》 CSCD 北大核心 2013年第4期900-913,共14页 Mathematica Applicata
基金 国家自然科学基金资助项目(11071123)
关键词 两点第三边值问题 非均匀网格有限体积方法 RICHARDSON外推法 误差估计 Two point boundary value problem of third kind~ Nonuniform mesh finitevolume method Richardson extrapolation Error estimate
  • 相关文献

参考文献14

  • 1Marchuk G I, Shaidurov V V. Difference Methods and their Extrapolations[M]. New York: Springer- Verlag, 1983.
  • 2Clarence Burg,Taylor Erwin. Application of Richardson extrapolation to the numerical solution of partial differential equations[J]. Numerical Methods for Partial Differential Equation, 2009,25:810-832.
  • 3SUN Haiwei,ZHANG Jun. A high-order finite difference discretization strategy based on extrapolation :or convection diffusion equation[J]. Numerica: Methods for Partial Differential Equation, 2004,20 : 18- 32.
  • 4陈传淼.Galerkin解的外推法.湘潭大学学报,1981,2(4):1-6.
  • 5朱起定,林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989.
  • 6王军平 林群.有限元方法的渐近展开及其外推.系统科学与数学,5(2):114-120.
  • 7LI Ronghua,CHEN Zhongying,WU Wei. Generalized Difference Methods for Differential Equations-Nu- merical Analysis of Finite Volume Methods[M]. New York: Marcel Dekker Inc,2000.
  • 8郭伟利,王同科.两点边值问题基于应力佳点的一类二次有限体积元方法[J].应用数学,2008,21(4):748-756. 被引量:13
  • 9WANG Tongke, GU Yuesheng. Supereonvergent biquadratic finite volume element method for two-di- mensional Poisson's equations[J]. Journal of Computational and Applied Mathematics, 2010, 234: 447- 460.
  • 10YU Changhua, LI Yonghai. Biquadratic finite volume element methods based on optimal stress points for parabolic problems[J]. Journal of Computational and Applied Mathematics, 2011,236 (6) : 1055-1068.

二级参考文献25

  • 1Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655.
  • 2Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430.
  • 3Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68.
  • 4Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360.
  • 5Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000.
  • 6Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33
  • 7Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212.
  • 8Ciarlet P G. The Finite Element Methods for Elliptic Problems[M]. Amsterdam; North-Holland, 1978.
  • 9SUN Zhizhong. An unconditionally stable and O(r^2+h^4) order L∞ convergent difference scheme for linear parabolic equations with variable coeffcients[J]. Numerical Methods for Partial Differential Equations, 2001,17 :619-631.
  • 10L1 Weidong,SUN Zhizhong. An analysis for a high-order difference scheme for numerical solution to uxx= F(x, t, u, u,, ux ) [J]. Numerical Methods for Partial Differential Equations, 2006,22: 897-919.

共引文献32

同被引文献24

  • 1CHEN ChuanMiao,HU HongLing,XIE ZiQing,LI ChenLiang.Analysis of extrapolation cascadic multigrid method(EXCMG)[J].Science China Mathematics,2008,51(8):1349-1360. 被引量:23
  • 2张莉芝.多角形域上的数值积分公式的外推[J].贵州科学,1996,14(1):18-24. 被引量:1
  • 3王兴华.论Hermite插值[J].中国科学(A辑),2007,37(8):945-954. 被引量:3
  • 4王同科,张东丽,王彩华.Mathematica与数值分析实验[M].北京:清华大学出版社,2011.
  • 5STOER J,BULIRSCH R.Introduction to numerical analysis[M].2nd ed.New York:Springer,2002.
  • 6KRESS R.Numerical analysis[M].New York:Springer,1998.
  • 7DE BOOR C.A practical guide to splines[M].New York:Springer,2001.
  • 8LARSON M G,BENGZON F.The finite element method:theory,implementation,and applications[M].Berlin:Springer,2013.
  • 9LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
  • 10蒋尔雄,赵风光,苏仰锋.数值逼近[M].2版.上海:复旦大学出版社,2008.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部