期刊文献+

基于LDA模型挖掘招聘信息的技术主题 被引量:2

Mining Technology Topics from Recruitment Information Using LDA
在线阅读 下载PDF
导出
摘要 互联网中发布着大量的招聘信息,这些信息不仅反映了公司对人才的需求,而且暗含市场中的技术热点和公司的技术主题。针对招聘信息中所蕴含的技术主题,本文提出一种将句子分类和主题抽取相结合的方法。该方法使用LDA模型对招聘信息建模,再通过SVM分类提取出与技术相关的句子,最后从技术相关的句子中抽取出技术主题,整合成招聘信息的技术主题。实验结果表明该方法能够准确地挖掘出招聘信息的技术主题,获得了良好的效果。 There is a huge number of recruitment information on Interact.These information not only respect the requirements from companies,but also imply the hot technologies in market and the technology topics in companies.For the technology topics implied by recruitment information,this paper proposes a method combining sentence classification and topic extraction.This method uses LDA to model the recruitment information,and then classifies the sentences about technology by SVM,finally,extracts the technology topics from the technology sentence and integrates them into the technology topics of recruitment information.Experimental results show that the method achieves good effect in extracting the technology topics from recruitment information.
出处 《计算机与现代化》 2013年第9期46-49,共4页 Computer and Modernization
关键词 文本挖掘 技术主题 LDA模型 招聘 mining text technology topic LDA recruitment information
  • 相关文献

参考文献12

  • 1Wu Roung-Shiunn,Chou Po-Hsuan.Customer segmentation of multiple category data in e-commerce usinga softclustering approach[J].Electronic Commerce Research and Applications,2011,10 (3):331-341.
  • 2Stacy K Lukins,Nicholas A Kraft,Letha H Etzkom.Source code retrieval for bug localization using latent Dirichlet allocation[C]// Proceedings of the 15th Working Conference on Reverse Engineering.2008:155-164.
  • 3Dongshan Xing,Mark Girolami.Employing latent Dirichlet allocation for fraud detection in telecommunications[J].Pattern Recognition Letters,2007,28 (13):1727-1734.
  • 4Cassidy R Sugimoto,Daifeng Li,Terrell G Russell,et al.The shifting sands of disciplinary development:Analyzing north american library and information science dissertations using latent Dirichlet allocation[J].Journal of the American Society for Information Science and Technology,2011,62(1):185-204.
  • 5俞琰.基于隐马尔可夫模型的招聘网络信息抽取[J].北京电子科技学院学报,2008,16(4):93-98. 被引量:6
  • 6胡东波,肖丹萍,曹婷.数据挖掘在员工网络招聘中的应用研究[J].商业现代化,2010(14):108-109.
  • 7Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
  • 8Joachims T.Making large-scale support vector machine learning practical[M]// Advances in Kernel Methods-Support Vector Learning.MIT Press,1999:169-184.
  • 9百度招聘.百度官方招聘页面[EB/OL].http://hr.about:blank.corm,2012-11-27.
  • 10中国科学院计算技术研究所.Imdict-chinese-analyzer[EB/OL].http://code.google.com/p/imdict-chinese-an-alyzer/,2010-03-02.

二级参考文献8

  • 1DAYNE FREITAG,ANDREW KACHITES MCHITES MCCALLUM.Information extraction using hmms and shrinkage.AAAI-99 Workshop on Machine Learning for Information Extraction[J].1999,(7):31~36.
  • 2C Hsu,M Dung.Generating finite-state transducers for semistructured data extraction from the web.Information System[J].1998,(8):23~31.
  • 3Leek T R.Information Extraction Using Hidden Markov Models[Dissertation].San Diego:University of California,1997.
  • 4S Lawrence,C L Giles,K Bollacker.Digital Libraies and Autonomous Citation Indexing.IEEE Computer[J].1999,(6):67~71.
  • 5Muggleton,S.Inverse entailment and Progol.New Generation Computing Journal[J].1995,(13):245~286.
  • 6Raibiner,L R.A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.Proceedings of the IEEE[J].1977,(2):257~286.
  • 7T W Hong,K L Clark.Using Grammer Inferrence to Automate Information Extraction from the Web.In Principles of Data Mining and Knowledge Discovery[J].2001,(1):216~227.
  • 8S Lawrence,C L Gilies,K Bollacker.Digital Libraries and Autonomous Citation Indexing.IEEE Computer[J].1999,(6):67~71.

共引文献5

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部