期刊文献+

在线标定技术在计算机化自适应测验中的应用 被引量:9

Application of Online Calibration Technique in Computerized Adaptive Testing
在线阅读 下载PDF
导出
摘要 计算机化自适应测验(Computerized Adaptive Testing,CAT)近年来得到迅猛发展,题目增补对CAT的题库建设与维护至关重要。新题标定作为题目增补过程中的技术难点,它的精度直接影响被试能力估计的准确性,目前在线标定技术经常用于标定新题。从在线标定设计和在线标定方法两个方面,对两类CATs(以项目反应理论为基础的传统CAT以及以认知诊断理论为基础的认知诊断CAT(Cognitive Diagnostic CAT,CD-CAT))中的在线标定相关研究进行述评。传统CAT领域有着较丰富的研究,而CD-CAT的在线标定研究则刚刚起步。未来研究应进一步探讨在线标定设计/方法之间的比较与结合,以及CD-CAT和多维CAT的在线标定研究。 Computerized Adaptive Testing (CAT) has developed rapidly in recent years, ann item replenishing is essential for item bank construction and maintenance in CAT. Calibration of new items is a technical challenge in item replenishing, and the precision of which directly impacts the accuracy of the estimation of examinees' abilities. Now the online calibration technique has been commonly used to calibrate the new items. Studies on online calibration for two kinds of CATs (traditional CAT based on item response theory and cognitive diagnostic CAT (CD-CAT) based on cognitive diagnostic theory) are reviewed in the aspects of online calibration design and online calibration method. There have been relatively abundant research results for the traditional CAT, while online calibration studies of CD-CAT have just started. Future studies could further explore the comparison and combination of different online calibration designs/methods, as well as the online calibration for CD-CAT and multidimensional CAT.
出处 《心理科学进展》 CSSCI CSCD 北大核心 2013年第10期1883-1892,共10页 Advances in Psychological Science
基金 北京师范大学青年教师科学基金项目资助
关键词 在线标定 计算机化自适应测验 题库建设 认知诊断计算机化自适应测验 online calibration computerized adaptive testing item bank construction cognitive diagnostic computerized adaptive testing
  • 相关文献

参考文献31

二级参考文献153

共引文献105

同被引文献128

  • 1陈平,丁树良,林海菁,周婕.等级反应模型下计算机化自适应测验选题策略[J].心理学报,2006,38(3):461-467. 被引量:38
  • 2陈平.认知诊断计算机化自适应测验的项目增补:以DINA模型为例[D].北京:北京师范大学,2011.
  • 3Tatsuoka K K. Cognitive assessment: An introduction to the rule space method[M]. Routledge, 2009.
  • 4Chiu C. Statistical Refinement of the Q-matrix in Cognitive Diagno- sis[J]. Applied Psychological Measurement, 2013,37 (8) : 598-618.
  • 5Xiang R. Nonlinear penalized estimation of true Q-matrix in cogni- tive diagnostic models[D]. Columbia University, 2013.
  • 6DeCar|o L T. Recognizing Uncertainty in the Q-Matrix via a Bayes- ian Extension of the DINA Model[J]. Applied Psychological Mea- surement, 2012,36(6):447-468.
  • 7Close C N. An exploratory technique for finding the Q-matrix for the DINA model in cognitive diagnostic assessment: Combining the- ory with data[D]. UNIVERSITY OF MINNESOTA, 2012.
  • 8DeCarlo L T. On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix[J]. Ap- plied Psychological Measurement, 2010,35 ( 1 ):8-26.
  • 9de la Torte J. An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications[J]. Journal of Educational Measurement, 2008,45 (4):343.
  • 10de la Torre J, Douglas J A. Higher-order latent trait models for cog- nitive diagnosis[J]. Psychometrika, 2004,69(3):333-353.

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部