期刊文献+

相协样本下密度核估计的联合渐近分布 被引量:1

Joint Asymptotic Distribution of Kernel Estimator of a Density Function under Associated Samples
在线阅读 下载PDF
导出
摘要 证明了相协样本下密度函数的核估计在有限个不同点上的联合渐近分布为多维正态分布. It is shown, in this paper, that the joint asymptotic estimator of a density function at a finite number of points distribution. distribution of the kernel is a multivariate normal
出处 《数学研究》 CSCD 2013年第3期283-293,共11页 Journal of Mathematical Study
关键词 相协样本 密度核估计 渐近正态性 Associated sample Kernel estimator of a density function Asymptoticnormality.
  • 相关文献

参考文献11

  • 1Rosenblatt M. Remark on Nonparametric Estimates of a Density Function[J]. Ann Math Statist, 1956, 27: 832-837.
  • 2Parzen E. On estimation of a probability density function and mode[J]. Ann Math Statist, 1962, 33: 1065-1076.
  • 3Prakasa Rao B L S. Nonparametric function estimation[M]. New York, Academic Press, 1983.
  • 4Silverman B W. Density Estimation for Statistics and Data Analysis[M]. Chapman and Hall, New York, 1986.
  • 5林正炎.相依样本情形时密度的核估计[J].科学通报,1983,28(12):709-713.
  • 6韦来生.NA样本概率密度函数核估计的相合性[J].系统科学与数学,2001,21(1):79-87. 被引量:35
  • 7George G, Roussas. Asymptotic normality of the kernel estimate of a probability den- sity function under association[J]. Statistics and Prob Lett, 2000, 50: 1-12.
  • 8Esary J D, Proschan F, Walkup D W. Association of random variables with applica- tions[J]. Ann Math Statis.t, 1967, 38: 1466-1474.
  • 9Block H W, Savits T H, Sharked M. Some concepts of negative dependence[J]. Ann Probab, 1982, 10: 765-772.
  • 10薛留根,王君学.递推密度核估计的渐近正态性[J].许昌师专学报,1993,12(3):1-6. 被引量:2

二级参考文献5

  • 1苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 2Pan J M,应用概率统计,1997年,13卷,183页
  • 3苏淳,中国科学.C,1996年,26卷,1091页
  • 4Prakasa Rao B L S,Nonparametric function estimation,1983年
  • 5Yuan Ming,A Glivenko-Gantelli lemma with applications

共引文献44

同被引文献15

  • 1Owen A B. Empirical likelihood ratio confidence intervals for a single functional[ J ]. Biometrika, 1988,75( 2 ) : 237-249.
  • 2Owen A B. Empirical likelihood confidence regions [ J ]. Annals of Statistics, 1990,18 ( 1 ) :90-120.
  • 3Owen A B. Empirical likelihood for linear models [ J ]. Annals of Statistics, 1991,19 ( 4 ) : 1725 - 1747.
  • 4Owen S X. On the accuracy of empirical likelihood confidence regions for linear regression models EJ]. Annals of the Institute of Statistical Mathematics, 1993,45 (4) : 621-637.
  • 5Chen S X. Empirical likelihood confidence intervals for hnear regression coefficients [ J ]. Journal of Multivariate Analysis, 1994,49 ( 1 ) : 24-40.
  • 6Kitamura Y. Empirical likelihood methods with weakly dependent processes[J]. Annals of Statistics, 1997,25(5) :2084-2102.
  • 7Chen S X. Wong C M. Smoothed block empirical likelihood for quantiles of weakly dependent processes [J]. Statistica Sinica, 2009,19(1) :71-81.
  • 8Wu R N,Gao J G. Bloekwise empirical likelihood for time series of counts [J]. Journal of Multivariate Analysis,2011,102(3): 661-673.
  • 9Qin Y S, Li Y H, Lei Q Z. Empirical likelihood for probability density functions under negatively associated samples[J ]. Journal of Statistical Planning and Inference, 2011,141 ( 1 ) : 373-381.
  • 10Ll Y H, Qin Y S, Lei Q Z. Confidence intervals for probability density functions under associated samples [ J ]. Journal of Statistical Planning and Inference, 2012,142 ( 6 ) : 1516-1524.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部