期刊文献+

资源一号“02C”遥感影像土地利用分类 被引量:8

Land use classification using ZY1-"02C" remote sensing images
在线阅读 下载PDF
导出
摘要 以杭州市主城区为试验区,针对建设用地与裸地空间纹理的复杂度和水体与阴影高程差异,拟采用半方差函数与Z检验结合选出的图像纹理结合高程信息等分量实现神经网络分类.结果表明,与单纯使用光谱信息相比,图像纹理的引入使总体分类精度提高约4%,加入高程信息则可以使总体分类精度提高约10%,达到82.75%,表明该方法可以应用于新数据的分类并得到相对满意的结果. Land use of Hang Zhou city was classified from ZY-1 02C imagery in an neutral network approach using spectral,texture,and nDSM(Normalized Digital Surface Model) features.Texture features are selected from the combined use of semi-variance function and Z test.Construction and bare land were separated according to texture complexity distinction.Shadow and water were identified with the support of nDSM.Accuracy assessment indicate that addition of image textures can improve overall classification accuracy by 4% in comparison with classification using original bands solely.Furthermore,inclusion of elevation data can increase overall accuracy by 10% to 82.78%,which demonstrates the effectiveness of proposed method in the classification of 02C data.Classification result is acceptable.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第8期1508-1516,共9页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(31172023) 国家高技术产业化应用专项资助项目(2009214) 浙江省重点科技创新团队资助项目(2010R50030)
关键词 “02C” 纹理 高程 分类 精度 "02C" texture nDEM classification accuracy
  • 相关文献

参考文献14

  • 1国土资源部.资源一号”02C”在轨交付仪式举行[EB/OL].[2012-04-18].http://www.mlr.gov.cn/xwdt/tpxw/201204/t20120418-1085506.htm.
  • 2DENG Sheng-lu, QI Hao-wen. A survey of image clas- sification methods and techniques for improving classifi- cation performance [J]. International Journal of Remote Sensing, 2007, 28(5): 823- 870.
  • 3DENG Sheng-lu, QI Hao-wen. Extraction of urban imper- vious surfaces from an IKONOS image [J]. International Journal of Remote Sensing, 2009, 30(5) : 1297 - 1311.
  • 4VAN DE VOORDE T, JACQUET W, CANTERS F. Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious sur- face data [J]. Landscape and Urban Planning, 2011, 102(3) : 143 - 155.
  • 5ZHU Zhe, WOODCOCK C E, ROGAN J, et al. As- sessment of spectral, polarimetric, temporal, and spa- tial dimensions for urban and peri-urban land cover clas- sification using Landsat and SAR data [J]. Remote Sens- ing of Environment, 2012, 117:72 - 82.
  • 6WU Bo, WANG Xiao-qin, SHEN Huan-feng, et al. Feature selection based on max-min-associated indices for classification of remotely sensed imagery [J]. Inter- national Journal of Remote Sensing, 2012, 33(17) : 5492 - 5512.
  • 7IHADL. ZY-1 "02C" Satellite parameters[EB/OL]. [2012-03-26 ] http: // blog. esdn. net/ihadl/article/de- tails/7395366.
  • 8NIKOLAKOPOULOS K G. Comparison of four differ- ent fusion techniques for IKONOS data. [C]// IEEE In- ternational Geoscience and Remote Sensing Symposium. New York: IEEE, 2004, 2534-2537.
  • 9ZHA Y, GAO J, NI S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery [J]. International Journal of Remote Sensing, 2003, 24(3): 583-594.
  • 10DENG Sheng-lu, QI Hao-wen. Urban classification using full spectral information of Landsat ETM + imagery in Marion County, Indiana [J]. Photogr'anunetrlc Engineering & Remote Sensing, 2005, 71(11) : 1275 - 1284.

二级参考文献9

共引文献41

同被引文献97

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部