期刊文献+

一种基于矩阵的Apriori改进算法 被引量:21

Improvement of Apriori Algorithm Based on Matrixes
在线阅读 下载PDF
导出
摘要 针对Apriori算法中I/O负载大和减枝过程中生成大量中间结果两个性能瓶颈问题,提出了一种事务矩阵和项集矩阵的Apriori改进算法。算法的基本思想是:扫描数据库生成事务矩阵,通过事务矩阵和项集矩阵之间的运算代替Apriori算法中的数据库扫描得到频繁项集,减少I/O负载,加快候选项集的验证速度;通过对频繁项集矩阵的操作,减少生成候选频繁项集的数目,避免Apriori算法减枝步骤中对候选项集的分解和判断。通过仿真验证了改进算法的有效性。 Given the bottlenecks of Apriori algorithm,an improved algorithm based on Transaction Matrix and Itemset Matrix was proposed.The fundamental idea of this algorithm is as follows:Transaction Matrix is available by scanning databases only once.Frequent itemsets were obtained via operations on Transaction Matrix and Itemset Matrix,instead of scanning databases repeatedly in Apriori,so that I/O load was reduced,and the verification speed of candidate itemsets was accelerated.By Frequent Itemset Matrix operations,the number of candidate itemsets was reduced,candidate itemsets decomposition and judgment were avoided in pruning step in Apriori.Emulation experiments show the improved algorithm is effectual.
出处 《计算机仿真》 CSCD 北大核心 2013年第8期245-249,共5页 Computer Simulation
基金 陕西省自然基金青年项目(2012JQ1019) 空军工程大学航空航天工程学院科研创新基金(XS1101021)
关键词 关联规则 矩阵 频繁项集 Association rule Matrix Frequent itemset
  • 相关文献

参考文献12

  • 1R Agrawal, T Imielinski, A Swami. Mining association rules be- tween sets of items in large database [ C ]. Proceedings of ACM SIGMOD International Conference on Management of Data. Wash- ington, D.C., USA: [s.n. ], 1993.
  • 2毛国君.数据挖掘原理与算法[M].北京:清华大学出版社,2007.
  • 3A Hyvarinen. Fast and robust fixed point algorithm for independent component analysis [ J ]. IEEE Transaction on Neural Network, 1999,10(3) :626 -634.
  • 4J S Park. , M S Chen, P S Yu. An effective hash based algorithm for mining association rules[C]. Proceedings 1995 ACM SIGMOD International conference Management of Data ( SIGM OD'95 ). San Jose, CA, 1995:175-186.
  • 5H Toivonen. Sampling large databases for association rules[C]. In Proceeding 1996 Internati -onal conference Very Large Data Bases (VLDB'96). India: Bombay, 1996:134-145.
  • 6J W Han, J Pei, Y Yin. Mining frequent patterns without candi- date generation[C], proc of the 2000 ACM SIGMOD Int Conf on Management of Date. Dala - s, 2000 : 1 - 12.
  • 7R Agrawal, R Srikant. Fast algorithm for mining association rules [ C ]. Proceedings of the 20th International Conferenee on VLDB. Santiago: Is. n. ] , 1994.
  • 8E N Han, G Karypis, V Kumar. Scalable parallel data mining for association rules [ C ]. In Proceeding of the ACM SIGMOD97, 1997:277 - 288.
  • 9D W Cheung, et al. A fast distribute algorithm for mining associa- tion rules[ C ]. In Proceeding 2000 International conference Paral- lel and Distributed Information System. Miami Beach, FL. Dec 1996:31 -44.
  • 10刘晶,朱清香,梅群,张蕾.一种基于单处理机的并行关联规则算法及其在数字图书馆中的应用[J].图书情报工作,2011,55(7):114-117. 被引量:7

二级参考文献24

  • 1席景科,闫大顺.Web数据挖掘中数据集成问题的研究[J].计算机工程与设计,2006,27(8):1366-1368. 被引量:6
  • 2杨玉强,赵连朋.基于数据网格进行知识关联规则挖掘方法研究[J].计算机工程与应用,2007,43(13):167-169. 被引量:1
  • 3羊牧,周激流,胡艳梅.网格环境下多媒体关联规则数据挖掘方法研究[J].现代图书情报技术,2007(7):59-62. 被引量:2
  • 4Cristian Aflori, Mitica Craus. Grid implementation of the Apriori algorithm[J]. Advances in Engineering Software, 2007, (38) : 295 - 300.
  • 5Cheung D W, Ng V T, Fu A W. Efficient mining of association rules in distributed databases. IEEE Transactions on Knowledge and Data Engineering, 1996,8 ( 6 ) :911 - 922.
  • 6Lamine M A, Nhien A L K,Tahar M K. Distributed frequent itemsets mining inheterogeneous platforms. Journal of Engineering, Computing and Architecture, 2007 ( 9 ) : 110 - 121.
  • 7Guo Yunkai, Yang Junrui, Huang Yulei. An effective algorithm for mining quantitative association rules based on high dimension clustcr//The 4th International Conference on Wireless Communications, Networking and Mobile Computing. Dalian,2008:65 -69.
  • 8Frequent itemset mining implentations repository. [ 2010 -08 - 20 ]. http ://fimi. es. helsinki, fi/.
  • 9Cannataro M, Talia D, Trunfio P. KNOWLEDGE GRID.. High Performance Knowledge Discovery on the Grid [C] // Lecture Notes In Computer Science, Vol. 2242, Proceedings of the Second International Workshop on Grid Computing. 2001:38-50.
  • 10Ye Yan-bin, Chiang C-C. A Parallel Apriori Algorithm for Frequent Item sets Mining[C]//Proeeedings of the Fourth International Conference on Software Engineering Research Manage- ment and Applications(SERA'06). 2006:87-94.

共引文献143

同被引文献183

引证文献21

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部