期刊文献+

不同碳源合成Na2MnPO4F/C及其作为锂离子电池正极材料的性能 被引量:3

Synthesis of Na_2MnPO_4 F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery
在线阅读 下载PDF
导出
摘要 采用湿法球磨和原位热解碳包覆相结合的方法,分别以硬脂酸、柠檬酸、聚乙二醇-6000(PEG-6000)、β-环糊精为碳源,制备了不同结构的Na_2MnPO_4F/C复合材料,并研究了它们作为锂离子电池正极材料的电化学行为.通过X射线衍射(XRD)、扫描电镜(SEM)、BET比表面积测试、恒流充放电等表征手段,比较和分析了产物的结构、形貌及电化学性能.研究结果表明,由不同碳源制备的材料在形貌和颗粒尺寸上有明显差异,进而对它们的电化学性能造成很大影响.影响电化学性能的关键因素在于材料一次颗粒的大小.其中,以柠檬酸为碳源制备的样品呈现出典型的微纳结构和最小的一次颗粒(10-40 nm).并给出最佳的电化学性能:在1.5-4.8 V电压范围内,以5mA·g^(-1)充放电电流获得的首次放电比容量约为80mAh·g^(-1),且循环稳定性良好. Na2MnPO4F/C composites were synthesized by wet ball milling and in situ pyrolytic carbon coating. Stearic acid, citric acid, poly(ethylene glycol) 6000, and 13-cyclodextrin were used as carbon sources in the synthesis process. The structures, morphologies, and electrochemical performances of the as-synthesized Na2MnPO, F/C composites were further investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis, and galvanostatic charge- discharge tests. Distinct differences were observed in the morphologies and sizes of the Na2MnPO, F/C particles obtained from different carbon sources, and this significantly affected their electrochemical performances. It was found that the primary particle size of the Na2MnPO4F/C material is a key factor in the electrochemical performance. The sample synthesized using citric acid as the carbon source had a micro-nano structure, with the smallest primary particle size of 10-40 nm, and displayed the best electrochemical properties. It delivered an initial discharge capacity of 80 mAh. g-1 under a current density of 5 mA.g^-1 in the voltage range of 1.5-4.8 V, and displayed good cycling performance
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第9期1989-1997,共9页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50574063,21021002,21003102) 四川大学青年科学家基金(2011SCU11081) 高等教育博士点科研基金(20120181120103)资助~~
关键词 锂离子电池 正极材料 Na_2MnPO_4F/C 碳源 形貌 Lithium ion battery Cathode Na2MnPO4F/C Carbon source Morphology
  • 相关文献

参考文献3

二级参考文献111

  • 1卢俊彪,唐子龙,张中太,金永拄.镁离子掺杂对LiFePO_4/C材料电池性能的影响[J].物理化学学报,2005,21(3):319-323. 被引量:33
  • 2文衍宣,郑绵平,童张法,粟海锋,薛敏华.镍离子掺杂对LiFePO_4结构和性能的影响[J].中国有色金属学报,2005,15(9):1436-1440. 被引量:17
  • 3庄大高,赵新兵,曹高劭,米常焕,涂健,涂江平.水热法合成LiFePO_4的形貌和反应机理[J].中国有色金属学报,2005,15(12):2034-2039. 被引量:29
  • 4Tarascon J M. Key challenges in future Li-hattery research. Philos Trans R Soc A-Math Phys Eng Sci, 2010, 368:3227-3241.
  • 5Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide composite electrodes for lithium-ion batteries. J Mater Chem, 2005, 15:2257-2267.
  • 6Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in 'composite' xLizMnO3 (1-x)LiMn05Ni0.502 electrodes. Electrochem Commun, 2004, 6:1085-1091.
  • 7Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17:3112-3125.
  • 8Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3(l-x) LiMno 333Ni0.333Co0.333O2 (O≤x≤0.7). Chem Mater, 2008, 20:6095-6106.
  • 9Guo X J, Li Y X, Zheng M, et al. Structural and electrochemical characterization of xLi[Li1/3Mnz2/3]O2 (1-x)Li[Nil/3Mn1/3CO1/3]02 (0≤x≤0.9) as cathode materials for lithium ion batteries. J Power Sources, 2008, 184:414-419.
  • 10Strobel P, Lambert-Andron B. Crystallographic and magnetic structure of Li2MnO3. J Solid State Chem, 1988, 75:90-98.

共引文献29

同被引文献16

  • 1Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 2Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
  • 3Pan H, Hu Y S, Chen L. Room-temperature stationary sodi- um-ion batteries for large-scale electric energy storage [J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
  • 4Barpanda P, Chotard J N, Recham N, et al. Structural, trans- port, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes [J]. Inor- ganic Chemistry, 2010, 49(16): 7401-7413.
  • 5Ellis B L, Makahnouk W R M, Makimura Y, et al. A multi- functional 3.5 V iron-based phosphate cathode for recharge- able batteries[J]. Nature Materials, 2007, 6(10): 749-753.
  • 6Wu X, Zheng J, Gong Z, et al. Sol-gel synthesis and electro- chemical properties offluorophosphates Na2Fel_xMnPO4F/C(x = O, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery [J]. Journal of Materials Chemistry, 2011, 21(46): 18630-18637.
  • 7Kim S W, Seo D H, Kim H, et al. A comparative study on Na2MnPOaF and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14 (10): 3299-3303.
  • 8Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
  • 9Grey C P, Lee J. Lithium MAS NMR studies of cath- ode materials for lithium-ion batteries[J]. Solid State Sci- ences, 2003, 5(6): 883-894.
  • 10Jian Z, Yuan C, Han W; et al. Atomic structure and kinet- ics of NASICON NaV2(PO4)z cathode for sodium-ion- batteries[J]. Advanced Functional Materials, 2014, doi: 10.1002/adfin.201400173.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部