摘要
该文的目的就是要计算正规三角矩阵环T=R M0()S上的高阶导子.设R,S为带有单位元的环且M为(R,S)双模.如果将此高阶导子记为d(r,m,s),则它就有如下形式:dn(r,m,s)=(δnR(r),τn(m),δnS(s))+∑n-1i=0[(δiR(r),τi(m),δiS(s)),mn-iE12].经过计算,就可以得到δR={δnR}n∈N与δS={δnS}n∈N分别为R和S上的高阶导子,并且映射集τ={τn}n∈N与(δR,δS)相关.
The aim of this paper is to compute the higher derivation of the formal triangular matrix ring T = R M 0() S.Let R,S be rings with unity and M be a unital(R,S)-bimodule.If this higher derivation is denoted by d(r,m,s),then it has the form: d n(r,m,s) =(δ n R(r),τ n(m),δ n S(s)) + ∑ n-1 i = 0 [(δ i R(r),τ i(m),δ i S(s)),m n-i E 12 ].After computation,δ R = { δ n R } n∈N and δ S = { δ n S } n∈N are the higher derivations of R and S respectively.The maps τ = { τ n } n∈N are relative to(δ R,δ S).
出处
《曲阜师范大学学报(自然科学版)》
CAS
2013年第3期29-32,共4页
Journal of Qufu Normal University(Natural Science)
基金
supported by the National Natural Science Foundation of China(Grant No.11171183)
the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2011AM013)
关键词
高阶导子
正规三角矩阵环
环同态
模
higher derivation
formal triangular matrix ring
ring homomorphism
module