期刊文献+

GwMKnn:针对类属性数据加权的MKnn算法 被引量:1

GwMKnn:MKnn algorithm for Nominal Data by Gini Weight
在线阅读 下载PDF
导出
摘要 互k近邻MKnn算法是k-近邻算法的一种有效改进算法,但其对类属性数据通常采用属性值相同为0,不同为1的方法处理,从而在类属性数据较多的数据集上分类效率受到一定程度的抑制.针对MKnn对类属性数据处理方法的不足,对类属性数据的处理引进类别基尼系数的概念,对同类样本,用基尼系数统计某一类属性中不同值分布对这个类的贡献度作为此类属性的权重,并以此作为估算不同样本之间的相似性对MKnn进行优化,扩宽MKnn的使用面.实验结果验证了该方法的有效性. MKnn is an improved version of the k-nearest neighbor method, but it uses general approach to deal with nominal data, that is, if its value is the same then to 0, different to 1, thus the classification efficiency is suppressed a certain degree on the data sets with more nominal data. The concept of Category's Gini is introduced in this paper to deal with the shortage of the processing on nominal data, which statistics the contribution of samples in same class by its data distribution for its category and takes it as the attribute weight, used to estimate the similarity for different samples. It aims to optimize the MKnn method and promotes its applications. The experimental results demonstrate the effect-tiveness of the proposed method.
出处 《计算机系统应用》 2013年第8期103-108,158,共7页 Computer Systems & Applications
基金 国家自然科学基金(61070062) 福建高校产学合作科技重大项目(2010H6007) 福建省教育厅B类项目(JB12201)
关键词 类属性数据 K-近邻 互k-近邻 基尼系数 nominal data k-nearest neighbor mutual k-nearest neighbor Gird index
  • 相关文献

参考文献27

  • 1Wu X, Kumar V, Quinlan J, Ghosh J, Yang Q, Motoda H, McLach -lan G, Ng A, Liu B, Yu P, Zhou Z, Steinbach M, Hand D, Stein- berg D. Top 10 algorithms in data_ mining. Knowledge and Infor- mation Systems,2008,14:1-37.
  • 2张著英,黄玉龙,王翰虎.一个高效的KNN分类算法[J].计算机科学,2008,35(3):170-172. 被引量:55
  • 3陆广泉,谢扬才,刘星,张师超.一种基于KNN的半监督分类改进算法[J].广西师范大学学报(自然科学版),2012,30(1):45-49. 被引量:7
  • 4Uchino E, Tokunaga K, Tanaka H, Suetak N. IVUS-Based Co- ronary Plaque Tissue Characterization Using Weighted Multi- ple k-Nearest Neighbor.Engineering Letters,2012,20: Advance online publication.
  • 5余鹰,苗夺谦,刘财辉,王磊.基于变精度粗糙集的KNN分类改进算法[J].模式识别与人工智能,2012,25(4):617-623. 被引量:32
  • 6杨金福,宋敏,李明爱.一种新的基于距离加权的模板约简K近邻算法[J].电子与信息学报,2011,33(10):2378-2383. 被引量:12
  • 7Biau C Chazal F, David C, Devroye L, Rodrqguez C. A Weighted k-Nearest Neighbor DensityEstimate for Geometric Inference. Electron.J.Statist, 2011,5:204-237.
  • 8Chu B, David T. k nearest-neighbor estimation of inverse density eighted expectations. Economics Bulletin, 2008, 3(48):1-6.
  • 9Guo G, Wang H, Bell D. kNN Model-based Approach in Classification. Proc. of ODBASE'03, Lecture Notes in Computer Science, 2003, LNCS2888: 986-996.
  • 10Liu H, Zhang S. Noisy data elimination using mutual k- nearest neighbor for classification mining. The Journal of Systems and Software, 2012,85:1067-1074.

二级参考文献67

共引文献119

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部