摘要
以经过地铁车站的拓扑线路数目作为评价地铁网络度分布的量化标准,通过最小二乘法(OLS)对统计数据非线性回归拟合,得到地铁网络度分布函数.首先,定义了地铁网络拓扑线路;其次,提出节点度和节点度分布的计算方法;最后,对52个地铁网络样本做非线性回归拟合.结果显示,52个地铁网络节点度分布能够被漂移幂律函数拟合,且地铁车站数目大于300的地铁网络,标度系数-b在2~3之间,且常量a在0~1范围内,这表明地铁网络度分布介于指数分布和幂律分布之间,这一结果与实际现象相吻合.
The number of topological lines that passes by subway station is taken as the quantitative criteria of the degree distribution of metro netw orks and the degree distribution function is fitted by the nonlinear ordinary least squares(OLS method).First,the topological line is defined and the calculation methods of degree and degree distribution are proposed.Finally,statistical analysis of 52 metro netw ork samples is carried out.The results show that the degree distribution of 52 subw ay netw orks can be fitted by SPL(shifted pow er law) function,and the scale factor-b falls in the range of 2 to 3 for large netw orks of more than 300 stations and 0 a 1,w hich indicates that degree distribution of subw ay netw orks is betw een exponential and pow er law distribution.This conclusion coincides w ith actual evolution of subw ay netw orks.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2013年第4期895-899,共5页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(51178116
71001027)
东南大学江苏省高校优势学科建设工程资助项目
关键词
地铁网络
复杂网络
无标度
漂移幂律
subway network
complex network
scale-free
shifted power law