期刊文献+

电信大数据解决方案及实践 被引量:9

Telco Big-Data Solution and Experience
在线阅读 下载PDF
导出
摘要 结合全球多个实际案例,提出了一个电信大数据的精简方案架构。方案结合运营商的实际应用场景,挑选合适的组件进行组合,摒弃了通用化的大平台。大数据的发展,一要通过大数据应用提升运营效率,二要通过数据即服务(DAAS)拓展新的服务内容,提供对外服务。在业务实施设过程中,抓取、管理和挖掘电信运营商的核心数据是基础,运营商大数据的快速部署和应用是最终目标,两者需要在效率、成本和时间上取得平衡。 In this paper discuss number of domestic and international big-data telecommunications architectures and propose our own lean big-data architecture. This new architecture combines the practical application scenarios of operators, and the universal large platform is abandoned. There are two directions in big-data development: improving business efficiency and providing data as a service (DaaS). Capturing, managing, and mining core data of a telecom operator is the basis for service implementation. Rapid deployment and application of big data is the final target A balance also needs to be struck between in efficiency, cost and time when deploying a big-data architecture.
作者 李秋静 叶云
出处 《中兴通讯技术》 2013年第4期39-41,45,共4页 ZTE Technology Journal
基金 国家高技术研究发展("863")计划(2013AA01A210)
关键词 大数据 电信网络 精简架构 数据即服务 big data telecommunications network, architecture as a lean data service
  • 相关文献

参考文献6

  • 1Cisco Systems. Cisco visual networking index global mobile data traffic forecast update, 2011 - 2016 [ES/OL]. [2013-03-25]. http:// www.cisco.com.
  • 2MANYIKA J, CHUI M, BROWN B, et al. Big data: The next frontier for innovation, competition, and productivity [R]. McKinsey Global Institute, 2011.
  • 3WHITET.Hadoop权威指南[M].2版.周敏奇,钱卫宁,金澈清,等译.北京:清华大学出版社,2011.
  • 4SNIA. 2012 SNIA Sprint Tutorials-NextGen Infrastructure for Big Data [EB/OL]. [2013-02-15]. http://www.snia.org.
  • 5NEUMEYER L, ROBBINS B, NAIR A, et al. S4 Distributed stream computing platform [C]// Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW' 10), Dec 14-17,2010, Sydney, AustraLia .Los Alamitos, CA. USA: IEEE Computer Society, 2010:170-177.
  • 6SHARON G, ETZION O. Event-processing network model and implementation [J]. IBM Systems Journal, 2008,47(2):321-334.

共引文献5

同被引文献71

  • 1汪小帆,李翔.陈关荣(2007).复杂网络理论及其应用[M].北京:清华大学出版社:9-14.
  • 2郭晓科.大数据[M].北京:清华大学出版社,2012:20-130.
  • 3DENG Zhonghua, FAN Bing, LU Yingjun, et al. Discussion a- bout big data mining based on hadoop [ J ]. Applied Mechan- ics and Materials, 2013, 380-384: 2063-2066.
  • 4PHRIDVIRAJ M S B, GURURAO C V. Data mining-past, present and future-a typical survey on data streams [ J ]. Pro- cedia Technology, 2014 (12) : 255-263.
  • 5HAN Rui, NIE Lei, GHANEM M M, GUO Yike. Elastic algo- rithms for guaranteeing quality monotonicity in big data mining [ C] //Proceedings -2013 IEEE International Conference on Big Data. IEEE Computer Society, 2013 : 45-50.
  • 6JI Xiaokang, MA Xiuli, HUANG Ting, TANG Shiwei. Contin- uously extracting high-quality representative set from massive data streams [ J]. Lecture Notes in Computer Science, 2013, 8346 ( 1 ) : 84-96.
  • 7TODD D P, YUNG R C, YOSHIMURA A. Using performance measurements to improve MapReduee algorithms [ J ]. Proce- dia Computer Science, 2012 (9) : 1920-1929.
  • 8CHEN Chun-Chieh, LEE Kuan-Wei, CHANG, Chih-Chieh, YANG De-Nian, CHEN Ming-Syan. Efficient large graph pat- tern mining for big data in the cloud [ C ] //Proceedings - 2013 IEEE International Conference on Big Data. IEEE Com-purer Society, 2013 : 531-536.
  • 9LEE D, JIN-SOO K, MAENG S. Large-scale incremental pro- eessing with MapReduee [ J ]. Future Generation Computer Systems, 2014, 36: 66-79.
  • 10HAN J W,MICHELINE K.数据挖掘概念与技术[M].范明,孟晓峰,译.北京:机械工业出版社,2012.

引证文献9

二级引证文献269

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部