期刊文献+

新型MEMS三维振动传感器的有限元分析 被引量:4

Finite Element Analysis for a New Kind of MEMS Three-Dimensional Vibration Sensor
在线阅读 下载PDF
导出
摘要 针对目前多维振动传感器的需求,研制了一种基于MEMS技术的仿昆虫纤毛三维振动传感器。首先,介绍了振动传感器的仿生机理和工作原理;然后,推导了振动传感器的力学模型并建立了有限元模型;最后,对该传感器进行了静、动态特性分析,并通过实验验证最终得出该传感器的灵敏度为274.18μV/gn、维间耦合小于等于0.612 5%、测量范围为±25 gn、共振频率为2 342.6 Hz、抗冲击能力为100 gn。 According to the requirements of multidimensional vibration sensor,a kind of three-dimensional MEMS vibration sensor imitated insects cilium is developed.After discussing the bionic mechanism and the operating principle,the mechanical model and the finite element model of the sensor were established.Combining the analysis of the static and dynamic characteristics of the sensor with experimental verification,the results show that the sensor ' s sensitivity is 274.18 μV/gn,and the demensional coupling interference is less then 0.612 5%,and the measurement range is ±25 gn,and the resonance frequency is 0-2 342.6 Hz.Its resistant to impact is 100 gn.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第4期502-508,共7页 Chinese Journal of Sensors and Actuators
基金 国家863计划项目(2011AA040404) 国家自然科学基金资助青年科学基金项目(51205374) 国家自然科学基金资助专项基金项目(61127008)
关键词 振动传感器 MEMS 有限元法 三维 仿生 vibration sensor MEMS finite element method three-demension bionic
  • 相关文献

参考文献13

二级参考文献42

共引文献58

同被引文献47

  • 1高建忠,赵玉龙,蒋庄德,杨静.负载刚度对电热微执行器输出性能的影响分析[J].Journal of Semiconductors,2006,27(1):162-167. 被引量:1
  • 2Astrid P. Reduction of Process Simulation Models : A Proper Or- thogonal Decomposition Approach [ D ] : [ PhD dissertation ]. Hol- land : Eindhoven University of Technology, Department of Electrical Engineering, 2004.
  • 3Rewienski M, White J. A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micmnmchined Devices [ J ]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ,2003,22(2) :155-170.
  • 4Dong N, Roychowdhury J. General-Purpose Nonlinear Model-Order Reduction Using Piecewise-Polynomial Representations [ J ]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008,27 (2) : 249- 264.
  • 5He J ,Ssetrom J, Durlofsky L J. Enhanced Linearized Reduced-Order Models for Subsurface Flow Simulation [ J ]. Journal of Computational Physics,2011,230(23) :8313-8341.
  • 6Jiang Y,Chen H. Application of General Orthogonal Polynomials to Fast Simulation of Nonlinear Descriptor Systems Through Piecewise- Linear Approximation [ J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2012,31 ( 5 ) : 804- 808.
  • 7Voss T, Verhoeven A, Bechtold T,et al. Model Order Reduction for Nonlinear Differential Algebraic Equations in Circuit Simulation [ C ]//Progress in Industrial Mathematics at ECMI 2006, Mathe- matics in Industry,2008,12(2) :518-523.
  • 8Nahvi S A,Nabi M, Janardhanan S. Trajectory Based Methods for Nonlinear Mor: Review and Perspectives [ C ]//IEEE International Conference on Signal Processing, Computing and Control, 2012:1-6.
  • 9Liu Y, Yuan W Z, Chang H L. A Global Maximum Error Controller- Based Method for Linearization Point Selection in Trajectory Piece- wise-Linear Model Order Reduction [ J ]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(7) :1100-1104.
  • 10Rewienski M,White J. A TBR-Based Trajectory Pieeewise-Linear Algorithm for Generating Accurate Low-Order Models for Nonlinear Analog Circuits and MEMS [ C 1//Design Automation Conference, 2003 : 490-495.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部