期刊文献+

一种新的局部空间排列算法

A New Local Space Alignment Algorithm
在线阅读 下载PDF
导出
摘要 局部切空间排列算法(local tangent space alignment,LTSA)是一种经典的非线性流形学习方法,能够有效地对非线性分布数据进行降维,但它无法学习局部高曲率数据集.针对此问题,给出了描述数据集局部曲率的参数,并提出一种局部最小偏差空间排列(locally minimal deviation spacealignment,LMDSA)算法.该算法考虑到局部切空间低鲁棒性的缺陷,在计算局部最小偏差空间的同时,能够发现数据的局部高曲率现象,通过参数控制及邻域间的连接信息,减少计算局部高曲率空间的可能,进而利用空间排列技术进行降维,手工流形及真实数据集的实验证实了该算法学习局部高曲率数据集的有效性. Recently, manifold learning has been widely exploited in pattern recognition and data mining. Local tangent space alignment (LTSA) is a classical non-linear manifold learning method, which is efficient for non-linear dimensionality reduction. However, it fails to learn locally high curvature dataset. To address this problem, this paper describes the data set of the locally curvature by the given parameter and presents a new algorithm called locally minimal deviation space alignment (LMDSA). Considering the low-robust deficiencies in local tangent space, LMDSA can find the locally high curvature while computing locally minimal deviation spaces. The algorithm also reduces the probability of locally high curvature space with parameter control and the joint information between neighborhood information. Then the algorithm applies space alignment technique to reduce dimensionality. Besides the advantages above, LMDSA has the ability to learn sparse dataset. Extensive experiments on both synthetic manifold and real-world images indicate the efficiency of our algorithm. In synthetic manifold, LMDSA is compared with LTSA in two local high curvature datasets and one dataset with a hole. The experimental results show our algorithm learns correct manifold structure in low-dimension space. In sparse real-world datasets, LMDSA outperforms other algorithms in paper.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第7期1426-1434,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61173163,51105052) 教育部新世纪优秀人才支持计划基金项目(NCET-09-0251) 辽宁省自然科学基金项目(201102037)
关键词 局部曲率 空间排列 局部空间 连接信息 流形学习 local curvature space alignment local space joint information manifold learning
  • 相关文献

参考文献25

  • 1Friedman H J. Flexible metric nearest neighbor classification[R/OL]. Stanford:Stanford University,1994 [ 2011-10-08]. http://citeseerx. ist. psu. edu/viewdoc/summary?doi =10. 1. 1. 31. 2959.
  • 2Jolliffe I T. Principal Component Analysis [M]. Berlin:Springer,1986.
  • 3Cox T,Cox M. Multi-Dimensional Scaling [M]. London:Chapman Hall,1994.
  • 4Roweis S T,Saul L K. Nonlinear dimensionality reductionby locally linear embedding [J]. Science,2000,290(5500):2323-2326.
  • 5Chang Hong,Yeung Dit-Yan. Robust locally linearembedding [J]. Pattern Recognition,2006,39 (6):1053 -1065.
  • 6王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 7Teh Y W,Roweis S T. Automatic alignment of localrepresentations [G]//Advances in Neural InformationProcessing Systems. Cambridge:The MIT Press,2003:841-848.
  • 8Zhang Zhenyue,Zha Hongyuan. Principal manifolds andnonlinear dimensionality reduction via tangent spacealignment [J]. SIAM Journal of Scientific Computing,2004,26(1):313-338.
  • 9Donoho D L,Grimes C. Hessian eigenmaps:Locally linearembedding techniques for high-dimensional data [J]. Proc ofthe National Academy of Sciences of the United States ofAmerica,2003,100(10):5591-5596.
  • 10Min Wanli,Lu Ke,He Xiaofei. Locality pursuit embedding[J]. Pattern Recognition,2004,37(4):781-788.

二级参考文献51

  • 1杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 2Roth P M,Winter M.Survey of Appearance-Based Methods for Object Recognition.Technical Report,ICA-TR-01/08,Graz,Austria:University of Technology.Institute for Computer Graphics and Vision,2008.
  • 3Golub G H,van Loan C F.Matrix Computations.3rd Edition.London,UK:Johns Hopkins University Press,1996.
  • 4Jolliffe I T.Principal Component Analysis.New York,USA:Springer-Verlag,1986.
  • 5Zhang Zhenyue,Zha Hongyuan.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment.SIAM Journal of Scientific Computing,2005,26(1):313-338.
  • 6Tenenbaum J B,de Silva V,Langford J C.A Global Geometric Framework for Non-Linear Dimension Reduction.Science,2000,290(5500):2319-2323.
  • 7Cox T,Cox M.Multidimensional Scaling.London,UK:Chapman & Hall,1994.
  • 8Wang Jing,Zhang Zhenyue,Zha Hongyuan.Adaptive Manifold Learning // Saul L K,Weiss Y,Bottou L,eds.Neural Information Processing Systems.Cambridge,USA:MIT Press,2004,XVII:1473-1480.
  • 9Min Wanli,Lu Ke,He Xiaofei.Locality Pursuit Embedding.Pattern Recognition,2004,37(4):781-788.
  • 10Jolliffe I T. Principal Component Analysis (Second Edition). New York: Springer-Verlag, 2002.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部