期刊文献+

金属材料表面静摩擦学特性的预测研究-理论模型 被引量:16

Predication investigation on static tribological performance of metallic material surfaces-theoretical model
在线阅读 下载PDF
导出
摘要 对分形几何理论进行了改进,在此基础上建立了法向载荷、最大静摩擦力、静摩擦系数的改进分形模型。通过中间自变量实际接触面积,构建了金属材料结合面静摩擦学特性的预测模型。计算和分析表明:静摩擦系数随着法向载荷或材料特性的增大而微凹弧式增大,但随着分形粗糙度的增加而微凹弧式减小;当分形维数较小时,静摩擦系数随着分形维数的增加而增加;但当分形维数较大时,静摩擦系数随着分形维数的增加而减小;在双常用对数坐标系统下,最大静摩擦力与法向载荷大多呈现出线性正比的关系;分形几何理论适用于法向载荷极小的情况。 The fractal geometric theory was modified. The improved fractal models for normal load, maximal static friction force and static friction coefficient were established using the improved fractal geometric theory. According to the intermediate variable of real contact area, the prediction model of static tribological performance of metallic material joint surface was given. The calculation and analysis indicate that the static friction coefficient slight-concavely increases as the normal load or material property parameter increases, while it slight-coneavely decreases with the increasing of fractal roughness. When the fractal dimension is smaller, the static friction coefficient increases as the fractal dimension increases; however, when the fractal dimension becomes larger, the static friction coefficient decreases as the fractal dimension increases. The maximum static friction force is mostly linearly proportional to the normal load on a common logarithm reference frame. The fraetal geometric theory can be taken in use under the condition of small normal load.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第12期40-44,66,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51275273 51075234 51205230) 水电机械设备设计与维护湖北省重点实验室开放基金资助项目(2012KJX05 2012KJX07) 三峡大学博士科研启动基金资助项目(KJ2012B013 KJ2012B014 KJ2012B015)
关键词 机械结合面 静摩擦系数 分形几何理论 最大静摩擦力 mechanical joint surface static friction coefficient fractal geometric theory maximal static friction force
  • 相关文献

参考文献12

二级参考文献58

  • 1《数学手册》编写组.数学手册[M].北京:高等教育出版社,2008:588-590.
  • 2Chang W R,Etsion I,Bogy D B.Static friction coefficient model for metallic rough surfaces[J].ASME Journal of Tribology,1988,110(1):57-63.
  • 3Greenwood J A,Williamson J B P.Contact of nominally flat surfaces[J].Pro.R.Soc.London,1966,295(1442):3 00-319.
  • 4Kogut L,Etsion I.A semi-analytical solution for the sliding inception of a spherical contact[J].ASME Journal of Tribology,2003,125(3):499-506.
  • 5Kogut L,Etsion I.A Static friction model for elastic-plastic contacting rough surfaces[J].ASME Journal of Tribology,2004,126(1):34-40.
  • 6Kogut L,Etsion I.Elastic-plastic contact analysis of a sphere and a rigid flat[J].ASME Journal of Applied Mechanics,2002,69(5):657-662.
  • 7Liou J L,Lin J F.A new method developed for fractal dimension and topothesy varying with the mean separation of two contact surfaces[J].ASME Journal of Tribology,2006,128(3):515-524.
  • 8Polycarpou A A,Etsion I.Analytical approximations in modeling contacting rough surfaces[J].ASME Journal of Tribology,1999,121(2):234-239.
  • 9Zhao Y W,Maietta D M,Chang L.An asperity micro-contact model incorporating the transition from elastic deformation to fully plastic flow[J].ASME Journal of Tribology,2000,122(1):86-93.
  • 10Majumdar A, Bhushan Bharat. Fractal Model of Elastic- Plastic Contact Between Rough Surfaces [J]. ASME Journal of Tribology, 19 91,113 ( 1 ) : 1-11.

共引文献89

同被引文献162

引证文献16

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部