期刊文献+

基于视觉点特征的图像检索技术研究 被引量:5

Research on Visual Features Based on Image Retrieval
在线阅读 下载PDF
导出
摘要 基于视觉点特征的图像检索是图像检索(Content Based Image Retrieval,简称CBIR)的一个子集,指利用图像中对图像的内容有显著影响的一些点特征对图像进行查询,试图在理解图像内容的基础上,检索出与示例相类似的图像。目前,CBIR技术在商标查询、罪犯比对等领域有着很重要的应用。本文主要集中在对图像的感兴趣点特征提取技术上,针对边缘方向直方图法存在的问题,提出一种基于Canny边缘提取及轮廓序列矩法,首先对图像进行预处理,然后采用Canny边缘提取方法提取图像的轮廓,最后,将该轮廓的3个矩作为最后的特征向量进行检索。实验证明,提出的算法检索效果较好。 At present,Content Based points Retrieval is a subset of the CBIR. It tries to inquiry the trademarks similar to the sample image, based on the comprehension of image contents. CBLR in trademark has wide prospect in the stage of similar or same trademarks examination,even in the field of trademarks inquiry. This paper does mainly research on the extracting of the points characters and counting the similarity in images. Firstly, the image shape is extracted by Canny algorithm, then, the moments are introduced to image retrieval. Experiments show that the proved method has effective performance.
出处 《计算机科学》 CSCD 北大核心 2013年第06A期196-198,共3页 Computer Science
基金 教育部科学技术研究重点项目(210128)资助
关键词 图像检索 边缘方向直方图 不变矩 轮廓序列矩 Image retrieval, Edge directions histogram, Invariant moments, Contour sequence moments
  • 相关文献

参考文献9

  • 1Fox E A, et al. Special Essue on Digital Library. Communica- tions of the ACM, 1995,38(4) : 22-75.
  • 2Mintzer F. Images on the path to the digital museum(plenary talk) [J]. IEEE ICIP, 2001,2 : 554.
  • 3章毓晋.浅谈Divx-一种新的视频服务[J].世界广播电视,1998,12(12):93.
  • 4Eriksson T, Goller A, Muchin S. A comparison of online commu- nication in distance education and in conventional edueation[C]// Proc. Frontiers in Education. 2001,1 :T2F/20- T2F/25.
  • 5邵虹,崔文成,赵宏.基于内容的图像检索技术研究[J].小型微型计算机系统,2003,24(10):1845-1848. 被引量:8
  • 6Castelli V,Bergman L D. Image Databases-Search and Retrieval of Digital Imagery[M]. John Willey & Sons, Inc, 2002.
  • 7Jacobs C E, et al. Fast multiresolution image querying [C]// Proe. SIGGAPH'95. 1995 : 277- 286.
  • 8Androutsos D, Plataniotis K N, Venetsanopoulos A N. Image re- trieval using the directional detail histogram[J]. SPIE, 1997, 3312:129-137.
  • 9韩殿元.基于梯度倒数加权和中值滤波的图像平滑改进算法[J].潍坊学院学报,2008,8(6):9-11. 被引量:2

二级参考文献8

  • 1Yanxi Liu. Classification-Driven pathological neuroimage retrieval using statistical asymmetry measures [J]. Proceedings of International Conference of Medical Image Computing and Computer Assisted Intervention(MICCAI 2001) ,2001 ,October 14- 17.
  • 2Chi-Ren Shyu, Carla E. Brodley, etc. Assert : A Physician-in-the-loop content-based retrieval system for HRCT image databases[J]. Computer Vision and Image Understanding, 1999,75(1/2) :111-132.
  • 3Brodley,C. Content-based retrieval from medical image databases :a synergy of human interacyion, machine learning and computer vision [C]. Proceedings of the National Conference on Artificial Intelligence Jul 18-Jul 22,1999.
  • 4James Ze Wang. SIMPLlcity:a region-based retrieval system for picture libraries and biomedical image databases[J]. ACM Multimedia, 2000 : 483 - 484.
  • 5Chad Carson, Virginia E. Ogle. Storage and retrieval of feature data for a Very large online image collection[J). IEEE Computer Society Bulletin of the Technical Committee on Data Engineering,1996,19(4) :19-27.
  • 6刘忠伟,章毓晋.综合利用颜色和纹理特征的图像检索[J].通信学报,1999,20(5):36-40. 被引量:84
  • 7何恒,余英林.一种用于图象检索的综合模糊直方图方法[J].中国图象图形学报(A辑),2001,6(7):694-698. 被引量:11
  • 8吴翌,庄越挺,潘云鹤.结合语义的Web图像检索系统[J].模式识别与人工智能,2001,14(2):156-161. 被引量:8

共引文献8

同被引文献43

  • 1杨敬辉,杨晶东.多假设跟踪的移动机器人SLAM算法[J].辽宁工程技术大学学报(自然科学版),2013,32(8):1107-1111. 被引量:2
  • 2姚宏宇,李弼程.基于广义图像灰度共生矩阵的图像检索方法[J].计算机工程与应用,2004,40(34):98-100. 被引量:19
  • 3何姗,郭宝龙,洪俊标.基于兴趣点颜色形状特征的图像检索方法[J].微电子学与计算机,2006,23(3):40-42. 被引量:6
  • 4黎洪松,刘洪伟.新的学习矢量量化初始码书算法[J].北京邮电大学学报,2006,29(4):33-35. 被引量:12
  • 5孙兴华,郭丽.数字图像处理[M].北京:机械工业出版社,2012 : 245-247.
  • 6Chiu L C,Chang T S,Chen J Y,et al.Fast SIFT Design for Real-Time Visual Feature Extraction[J].IEEE Transaction on Image Processing,2013,22(8):3158-3166.
  • 7Lowe D G.Object Recognition from Local Scale-invariant Features[C]//In International Conference on Computer Vision.Greece,Corfu,1999:1150-1157.
  • 8Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Jain P M,Gawande A D,Gautam L K.Image mining for image retrieval using hierarchical k-Means algorithm.International Journal of Research in Computer Engineering and Electronic,2013 ;2(6):1-5.
  • 10Raveaux R,Burie J C,Ogier J M.Structured representations in a content based image retrieval context.Journal of Visual Communication and Image Representation,2013 ;24(8):1252-1268.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部