期刊文献+

基于多特征的颅内脑电癫痫检测方法 被引量:4

Epileptic Seizure Detection Method Using Multi-Features of Intracranial EEG
在线阅读 下载PDF
导出
摘要 自动癫痫检测对癫痫病发作的诊断及减轻医务人员繁杂的工作有着重大的意义。本研究提出一种基于多特征的长程颅内脑电癫痫检测的新算法。该算法首先对颅内脑电信号进行小波分解和半波处理,然后提取脑电信号的微分方差、相对能量和波动指数组成特征向量,利用贝叶斯原理求得待检信号特征向量的后验概率,通过阈值判断达到癫痫检测的目的。利用德国弗莱堡长程脑电数据进行实验,检测灵敏度为94.2%,特异性为95.6%,误检率为每小时1.16次。实验表明,该算法能够有效检测出长程颅内脑电中的癫痫信号,并具有较低的运算复杂度,有利于实时脑电检测。 The automatic seizure detection and classification are significant in both diagnosis of epilepsy and relieving heavy working load of doctors. In this paper we proposed a new seizure detection method based on multi-features of long-term intracranial EEG. After wavelet and half-wave decomposition, differeutial variance, relative energy and relative fluctuation index were used to characterize seizure activity as three features. Then the feature vector was fed to Bayesian formulation which was used as a classifier. A sensitivity of 94.2% , average specificity of 95.6 % and a false detection rate of 1.16 per hour were achieved with long-term intracranial EEG from Freiburg dataset. The experimental results indicated that this method is able to detect epileptic seizures effectively and its low computational complexity made it suitable for real-time seizure detection.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第3期279-283,共5页 Chinese Journal of Biomedical Engineering
基金 国家科技支撑计划项目(2008BAI52B03) 山东省攻关计划项目(2010GSF10243) 山东大学自主创新基金(2012DX008)
关键词 颅内脑电 自动癫痫检测 微分方差 波动指数 intracranial EEG automatic seizure detection differeutial variance fluctuation index
  • 相关文献

参考文献12

  • 1Khan YU, Gotman J. Wavelet-based automatic seizure detection in intracerebral electroencephalogram [ J ]. Clinical Neurophysiology, 2003,114 ( 5 ) : 898 - 908.
  • 2Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG [ J ]. Electroencephalography and Clinical Neurophysiology, 1976, 41 (5) : 513 -529.
  • 3Gotman J. Automatic recognition of epileptic seizures in the EEG [J]. Electroencephalography and Clinical Neurophysiology, 1982, 54(5) : 530 -540.
  • 4Pradhan N, Dutt D, Satyam S. A mimetic-based frequency domain technique for automatic generation of EEG reports [ J]. Computers in Biology and Medicine, 1993, 23( 1 ) : 15 -20.
  • 5Sankar R, Natour J. Automatic computer analysis of transients in EEG[J]. Computers in Biology and Medicine, 1992, 22(6) : 407 - 422.
  • 6Grewal S, Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs [ J ]. Clinical Neurophysiology, 2005, 116(10) : 2460 -2472.
  • 7Majumdar KK, Vardhan P. Automatic seizure detection in ECoG by differential operator and windowed variance [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(4): 356-365.
  • 8Saab M, Gotman J. A system to detect the onset of epileptic seizures in scalp EEG [ J]. Clinical Neurophysiology, 2005,116 (2) :427 -442.
  • 9Yuan Q, Zhou W, Liu Y, et al. Epileptic seizure detection with linear and nonlinear features[ J]. Epilepsy and Behavior, 2012, 24:415 -421.
  • 10蔡冬梅,周卫东,李淑芳,王纪文,贾桂娟,刘学伍.基于去趋势波动分析和支持向量机的癫痫脑电分类[J].生物物理学报,2011,27(2):175-182. 被引量:5

二级参考文献15

  • 1宁艳,江朝晖,安滨,冯焕清.睡眠生理参数的去趋势波动分析[J].生物医学工程学杂志,2007,24(2):249-252. 被引量:9
  • 2王兴元,孟娟,邱天爽.基于独立分量分析算法研究儿童癫痫脑电的混沌动力学特征[J].生物医学工程学杂志,2007,24(4):835-841. 被引量:4
  • 3Sankar R, Natour J. Automatic computer analysis of transients in EEG. Comput Biol Med, 1992, 22(6): 407-422.
  • 4Pradhan N, Dutt DN, Satyam SS. A mimetic-based frequency domain technique for automatic generation of EEG reports. Comput Biol Med, 1993, 23(1): 15-20.
  • 5Sukhi G, Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol, 2005, 116(10): 2460-2472.
  • 6Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inform Technol Biomed Engin, 2007, 11(3): 288-295.
  • 7Nurujjaman M, Ramesh N, Sekar lyengar AN. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients. Nonlin Biomed Phys, 2009, 3(1): 6.
  • 8Swiderski B, Osowski S, Rysz A. Lyapunov exponent of EEG signal for epileptic seizure characterization. Chaos,1995, 5(1): 82-87.
  • 9Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev, 1994, 49(2): 1685-1689.
  • 10Peng CK, Havlin S, Stanley HE, Goldberger AL.Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 1995, 5(1): 82-87.

共引文献4

同被引文献19

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部