期刊文献+

基于BP神经网络的实时水表自动识别系统的研究 被引量:7

Research on Real-Time Water Meter Recognition System Based on BP Neural Network
在线阅读 下载PDF
导出
摘要 为提高数字水表字符的识别率,提出一种基于数字图像处理技术与BP神经网络的水表自动识别系统;首先对采集的水表图像进行预处理以获得字符区域,然后进行二值化操作,利用连通区域提取算法分割出单个字符,最后利用训练好的BP神经网络对分割后的字符进行识别,并输出识别结果;实际运行表明自动识别系统正确率在95%以上,并且能够实时显示水表数据。 In order to improve the recognition rate of the digital water meter characters, a water meter automatic recognition system based on image processing and BP neural network is proposed in this paper. Firstly, characters area is located through pre--processing water meter image. Secondly, single character is segmented by connection component algorithm after binary thresholding. Finally, recognition re- sult is obtained by pre--trained BP neural network system. Experimental results show the accuracy of the proposed automatic recognition system more than 95%, and it can real time display meter data.
出处 《计算机测量与控制》 北大核心 2013年第5期1330-1332,共3页 Computer Measurement &Control
关键词 数字水表 字符识别 BP神经网络 连通区域提取 字符分割 digital water meter character recognition BP neural network connection component extraction character segment
  • 相关文献

参考文献7

二级参考文献15

共引文献139

同被引文献35

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部