期刊文献+

基于线性最小方差和递归最小二乘的融合算法 被引量:7

Fusion Algorithm Based on Linear Minimum Variance and Recursive Least Squares
在线阅读 下载PDF
导出
摘要 针对目前水下目标定位的数据融合算法定位误差较大,精度缺乏良好性能的情况,提出一种应用于水下分布式探测考虑节点可信度的基于线性最小方差估计(LMSE)和递归最小二乘(RLS)的自适应融合算法。该算法采用两级自适应调整得到最优加权因子,首先利用线性最小方差估计(LMSE)算法得到权系数的初始值,然后利用训练节点和递归最小二乘(RLS)算法自适应地调整达到最优。对水下静态和运动目标定位进行的仿真表明,相比单传感器定位,提出的融合算法的定位精度有约1~2个数量级的提高。 In view of the present underwater target location data fusion algorithm accuracy was of large error, This paper proposed a new data fusion algorithm of underwater target positioning for the distributed sensor net- work based on the linear minimum square estimation (LMSE) criterion. The algorithm used two-stage adaptive adjustment to acquire optimized weighting factor by the recursive least squares (RLS) algorithm. Simulation re- sults of underwater static and moving target positioning showed that, compared with the single node localiza- tion, the positioning precision of the fusion algorithm was about one or two orders of magnitude higher.
出处 《探测与控制学报》 CSCD 北大核心 2013年第2期33-36,共4页 Journal of Detection & Control
关键词 水下目标定位 分布式传感器网络 数据融合算法 节点可信度 两级自适应调整 underwater target location distributed sensor network data fusion algorithm node credibility two-stage adaptive adjustment
  • 相关文献

参考文献10

  • 1LIU Chong, WU Kui, HE Tian. Sensor localization with ring overlapping based on comparison of received signal strength indicator mobile ad-hoc and sensor systems [-C]//IEEE International Conference on Digital Object l- dentifier. US.. IEEE, 2004,516-518.
  • 2Seovv C K, Seah W K G, Liu Z. Hybrid mobile wireless sensor network cooperative localization[C]//IEEE 22nd International Symposium on Digital Object Identifier. US.. IEEE, 2007 : 29-34.
  • 3相明,王昭,李宏,赵俊渭,宫先仪.水声信号数据融合系统的性能研究[J].声学学报,1999,24(6):575-581. 被引量:10
  • 4李宏,王昭,相明,杨日杰,赵俊渭,宫先仪.声呐数据融合的期望最大化(EM)算法[J].声学学报,2001,26(2):140-144. 被引量:2
  • 5Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Process- ing Magazine,2008,25(1) :116-129.
  • 6冉陈键,惠玉松,顾磊,邓自立.相关观测融合稳态Kalman滤波器及其最优性[J].自动化学报,2008,34(3):233-239. 被引量:8
  • 7胡士强,敬忠良,胡洪涛,田宏伟,李建勋.多传感器稳健融合跟踪算法[J].上海交通大学学报,2005,39(4):509-512. 被引量:16
  • 8高嵩,潘泉,肖泰琨,Chen Xiang.多传感器自适应滤波融合算法[J].电子与信息学报,2008,30(8):1901-1904. 被引量:15
  • 9OU Chiaho. Range-free node localization for mobile wire- less sensor networks[C]//3rd International Symposiu- mon Wireless Pervasive Computing. USA :IEEE Com- puter Society, 2008 : 535-539.
  • 10Florian Foelster, Jochen Schmidt, Dominik Froehlich, et al. Data fusion strategies in advanced driver assistance systems[C]//SAE International Journal of Passenger Cars-Electronic and Electrical Systems. Detroit: SAE, 2010 .. 176-182.

二级参考文献27

共引文献42

同被引文献105

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部