期刊文献+

基于短程反馈BP神经网络的混凝投药控制中试 被引量:10

Coagulant Dosage Control Based on Short-range Feedback BP Neural Network
原文传递
导出
摘要 针对水厂净水过程中混凝投药控制过程具有影响因素多、滞后性大和非线性的特点,依托实际项目,结合BP神经网络建立了短程反馈混凝投药自控模型。模拟水厂混凝沉淀工艺开发了中试装置,并对模型进行离线检测和连续运行,结果表明:BP神经网络模型的混凝剂投加量预测值与实际值的相对误差不超过6%;在模拟斜管中取水检测沉后水浊度,可缩短停留时间约20min;短程反馈BP神经网络混凝投药自控模型对不同季节的长江水均具有良好的适应性和较高的灵敏度,能控制沉后水浊度稳定在目标范围内。 Considering multiple influence factors, large delay and nonlinearity of coagulant dosage control at water treatment plants, an automatic control model of coagulant dosage with short-range feedback was established using BP neural network. The pilot plant was developed by simulating the coagula- tion and sedimentation process of a water treatment plant, while offline detection and continuous operation of the model were carried on. The results showed that the relative error was less than 6% between the predicted and the actual coagulant dosages. Water samples were taken from the simulated inclined pipe and analyzed for effluent turbidity, which could shorten the residence time by approximately 20 rain. The automatic control model of coagulant dosage with short-range feedback BP neural network showed a high sensitivity and could be applied to treatment of to the Yangtze River source water in different seasons. The effluent turbidity could be stably controlled within the target range.
出处 《中国给水排水》 CAS CSCD 北大核心 2013年第11期26-29,共4页 China Water & Wastewater
基金 国家水体污染控制与治理科技重大专项(2009ZX07424-004) 国家科技支撑计划项目(2012BAJ25B06-001)
关键词 混凝投药控制 BP神经网络 模拟斜管 反馈控制 中试 coagulant dosage control BP neural network simulated inclined pipe feed- back control pilot-scale test
  • 相关文献

参考文献8

二级参考文献13

共引文献55

同被引文献62

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部