期刊文献+

基于压缩算法的存取式多秘密视觉密码 被引量:4

The Access-based Multi-secret Visual Cryptography with Compression Algorithm
在线阅读 下载PDF
导出
摘要 依据多幅秘密图像的像素组合与基矩阵之间的映射关系,该文分析了目前存取式多秘密视觉密码存在的冗余基矩阵问题,提出了一种减小基矩阵规模的压缩算法。该算法以一列像素为处理单元,且满足秘密图像的整体对比性。在此基础上,设计了新的存取式多秘密视觉密码的秘密分享与恢复流程。与现有的方案相比,该方案能够有效减小共享份的尺寸,且对于简单图像的压缩效果更加明显。 According to the mapping relationship between the multiple secret images’ pixel combinations and the basis matrices,the redundant basis matrices are analyzed in the access-based multi-secret visual cryptography.A compression algorithm is proposed to decrease the size of basis matrices.The algorithm takes one column pixels as disposal unit,and satisfies the entire contrast of secret images.Based on the algorithm,new secret sharing and recovering procedures are designed for the access-based multi-secret visual cryptography.Compared with previous schemes,the present scheme can diminish the size of shares effectively,and the compression effects are obvious for the simple images.
机构地区 信息工程大学
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第5期1055-1062,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61070086)资助课题
关键词 视觉密码 多秘密 存取式 冗余基矩阵 压缩算法 Visual cryptography Multiple secrets Access-based Redundant basis matrices Compression algorithm
  • 相关文献

参考文献2

二级参考文献31

  • 1郭洁,颜浩,刘妍,陈克非.一种可防止欺骗的可视密码分享方案[J].计算机工程,2005,31(6):126-128. 被引量:16
  • 2黄东平,王道顺,黄连生,戴一奇.一种新的(k,n)阈值可视密钥分存方案[J].电子学报,2006,34(3):503-507. 被引量:7
  • 3徐晓辉,郁滨.无重影的可防欺骗视觉密码方案[C].计算机技术与应用进展(CACIS.2007),2007:1335-1339.
  • 4陈玲慧.视觉化密码之研究及其应用.中国台湾专题研究计划成果报告,计划编号:NSC89-2213-E-009-016,1999.
  • 5Gwoboa H, Tzungher C, and Dushiau T. Cheating in visual cryptography[J]. Designs, Codes and Cryptography, 2006, 38(2): 219-236.
  • 6王益伟,郁滨.一种(k',k,n)可防欺骗视觉密码方案[C].全国第19届计算机技术与应用学术会议(CACIS08),合肥,2008:492-496.
  • 7Yu B, Fang L G, and Xu X H. A Verifiable visual cryptography scheme[C]. CIS2008, Suzhou, 2008: 347-350.
  • 8Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 9Blakley G R. Safeguarding cryptographic keys[C]. Proceedings of the National Computer Conference, N J, USA, 1979, 48:242 -268.
  • 10Naor M and Shamir A. Visual cryptography[C]. Advances in Cryptology-Eurocrypt'94, Lecture Notes in Computer Science, 1995, 950: 1-12.

共引文献15

同被引文献37

  • 1NAOR M, SHAMIR A. Visual cryptography [ C ]//Proc of Eurocyp- to'94. New York: Springer-Vcrlag, 1995: 1-12.
  • 2PARK G D,YOON E J ,YOO K Y. A new copyright protection scheme with visual cryptography [ C ]//Proc of the 2nd International Confe- renee on Future Generation Communication and Networking Sympo- sia. Washington DC:IEEE Computer Society, 2008: 60-63.
  • 3ULUTAS M, ULUTAS G, NABIYEV V V. Medieal image security and EPR hiding using Shamir' s secret sharing scheme [ J ]. Journal of Systems and Software, 2011 ,84(3 ) : 341-353.
  • 4CSIRMAZ L, TARDOS G. Optimal infimnation rate of secret sharing schemes on trees[ J]. IEEE Trans on Information Theory, 2013, 59(4) : 2527-2530.
  • 5ITO R, KUWAKADO H, TANAKA H. Image size invariant visual cryptography[ J]. IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, 1999, 82 ( 10 ) : 2172-2177.
  • 6TUA S F, HOUB Y C. Design of visual eryptographic methods with smooth looking decoded images of invariant size for grey-level images [ J ]. Imaging Science Journal, 2007,55 (2) : 90-101.
  • 7ASKARI N, MOLONEY C, HEYS H M. A novel visual secret sharing scheme without image size expansion [ C ]//Proc of the 25th IEEE Ca-nadian Conference on Electrical & Computer Engineering. Washington DC : IEEE Computer Society, 2012 : 1 - 4.
  • 8HOU Y C. Visual cryptography for coh)r images[J]. Pattern Recog- nition, 2003,36(7 ) : 1619-1629.
  • 9SHYU S J, JIANG H W. General constructions for threshold nmhiple- secret visual cryptographic schemes[ J]. IEEE Trans on information Forensics and Security, 2013,8(5 ) : 733-743.
  • 10ATENIESE G, BLUNDO C, SANTIS A D, et al. Extended capabili- ties for visual cryptography [ J ]. Theoretical Computer Science, 2001,250(1) : 143-161.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部