期刊文献+

构建微博用户兴趣模型的主题模型的分析 被引量:30

Analysis of Topic Models on Modeling MicroBlog User Interestingness
在线阅读 下载PDF
导出
摘要 分析了不同的主题模型,通过实验比较了3种主题模型构建的微博用户兴趣模型的性能。实验结果表明:TwitterLDA适用于新文档或新用户的预测,AuthorLDA产生的主题具有较高的区分度,而UserLDA和AuthorLDA能更好地反映出用户的社交网络关系。上述工作为进一步研究主题模型如何应用于微博的个性化信息推荐、情感分析和话题检测与跟踪等文本挖掘应用奠定了基础。 This paper analysed different topic models,and compared three extended topic models' performance on mo-deling microblog user interestingness via three experiments.Experimental results show that TwitterLDA can apply to predict words on new unseen docuemnts and users,that the topics generated by AuthorLDA have a higher degree of differentiation,and that UserLDA and AuthorLDA can better reflect the users' relationships in real social network.The work in this paper lays the foundation for further studying how the topic model is applied to the text mining applications of microblogs such as personalized recommendation,sentiment analysis and topic detection and tracking.
出处 《计算机科学》 CSCD 北大核心 2013年第4期127-130,135,共5页 Computer Science
基金 国家自然科学基金项目(61170189 60973105 61202239) 教育部博士点基金(20111102130003)资助
关键词 主题模型 用户兴趣 个性化服务 Topic model User interest Personalized service
  • 相关文献

参考文献18

  • 1Blei D M, Lafferty J. Text Mining.. Theory and Applications [M]. Chapter Topic Models, Taylor and Francis, London, 2009.
  • 2Blei D M,Ng A Y,Jordan M I. Latent Dirichlet Allocation[J]. Journal of Maehine Learning Research, 2003,3(4/5) : 993-1022.
  • 3Steyvers M,Griffiths T. Probabilistic Topic Models[M]. Latent Semantic Analysis:A Road to Meaning, Laurence Erlbaum, 2005.
  • 4Heinrich G. Parameter estimation for text analysis[R]. Techni- cal report, http://www, arbylon, net/publications/textest, Ver- sion 2,2008.
  • 5Koller D,Friedman N. Probabilistie Graphical Models: Principles and Techniques[M]. MIT Press, 2009.
  • 6Zhao Xin, Jiang Jing, Weng Jian-shu, et al. Comparing Twitter and traditional media using topic models[C] //Proceedings of the 33rd European Conference on Information Retrieval. Springer- Verlag Berlin, Heidelberg, 2011 : 338-349.
  • 7Weng Jian-shu, Lim E-P,Jiang Jing, et al. TwitterRank: finding topic-sensitive influential twitterers[C]//Proceedings of the 3th ACM International Corfference on Web Search and Data Mining. New York City, NY,USA, 2010:261-270.
  • 8Hong Liang-jie,Davison B D. Empirical study of topic modeling in Twitter[C] // Proceedings of the First Workshop on Social Media Analytics. Washington DC, USA, 2010: 80-88.
  • 9Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author- topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press Arlington, Virginia, United States, 2004:487-494.
  • 10Steyvers M, Smyth P, Rosen-Zvi M, et al. Probabilistic author- topic models for information discovery[C]//Proceedings of the Tenth ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining. Seattle,WA,USA,2004:306-315.

同被引文献250

引证文献30

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部