摘要
KdV-mKdV方程是发现最早且最具代表性的非线性发展方程,在数学、物理、工程等领域,都有十分重要的应用前景.近些年来,对它的精确解的求解问题的研究不断增多.采用双曲正切函数展开法和推广的tanh法,对KdV-mKdV方程构造并分别求解,得到一些新的精确解.这种方法也可进一步推广用于求解其他非线性偏微分方程.另外,精确解的获得可为近似计算、定理分析等现实问题提供基础.
KdV-mKdV equation is found in the earliest and is the most representative of nonlinear evolution e- quations in history. It has very important application in mathematics, physics, engineering and other fields. Recent years we find more and more solutions. In this paper, we construct some new exact solutions for KdV- mKdV equation by using hyperbolic function expansion method, and extended tanh method. The method of this paper can also be extended to other nonlinear partial differential equations. In addition, the obtaining of the exact solutions will provide a necessary foundation for the approximate calculation, theorem analysis and other real problems.
出处
《河南理工大学学报(自然科学版)》
CAS
北大核心
2013年第1期118-121,共4页
Journal of Henan Polytechnic University(Natural Science)
基金
河南省科技厅基础与前沿研究项目(112300410120)
河南省教育厅自然科学研究计划项目(12A110009)
河南理工大学骨干教师资助项目(649178)
河南理工大学校青年基金项目(Q2012-30A)