期刊文献+

基于GMM的心音信号生物识别方法研究 被引量:3

Research on Biometric Method of Heart Sound Signal Based on GMM
在线阅读 下载PDF
导出
摘要 目的将倒谱系数提取和高斯混合模型(GMM)相结合,提出了一种基于心音信号的生物识别方法。方法首先心音信号预处理小波去噪,然后进行特征参数的选择,对比研究了线性预测倒谱系数(LPCC)和Mel频率倒谱系数(MFCC),再用高斯混合模型(GMM)进行识别。最后利用50名志愿者的100段心音信号对所提出的方法进行验证。结果对比实验证明LPCC比MFCC更适合用于心音信号的生物识别研究,通过对每段心音信号进行小波去噪,取得了比传统GMM方法更高的识别率。结论表明该方法能够有效提高系统的识别性能,达到了比较理想的识别效果。 Objective Extraction of cepstral coefficients combined with Gaussian Mixture Model (GMM) is used to propose a biometric method based on heart sound signal. Methods Firstly, the original heart sounds signal was preprocessed by wavelet denoising. Then, Linear Prediction Cepstral Coefficients (LPCC) and Mel Frequency Cepstral Coefficients (MFCC) are compared to extract representative features and develops hidden Markov model (HMM) for signal classification. At last, the experiment collects 100 heart sounds from 50 people to test the proposed algorithm. Results The comparative experiments prove that LPCC is more suitable than MFCC for heart sound biometric, and by wavelet denoising in each piece of heart sound signal, the system achieves higher recognition rate than traditional GMM. Conclusion Those results show that this method can effectively improve the recognition performance of the system and achieve a satisfactory effect.
出处 《中国医疗器械杂志》 CAS 2013年第2期92-95,99,共5页 Chinese Journal of Medical Instrumentation
基金 国家自然科学基金资助项目(30770551) 四川省教育厅资助项目(201147)
关键词 心音信号 生物识别 高斯混合模型 小波去噪 线性预测倒谱系数 MEL频率倒谱系数 heart sound, biometric GMM, wavelet denoising, LPCC, MFCC
  • 相关文献

参考文献11

  • 1Jain A K, Ross A, Prabhakar S. An introduction to biometric recognition[J]. IEEE Trans Circuits Syst Video Technol, 2004, 14(1):4-20.
  • 2Saechia S, Koseeyaporn J, Wardkein P. Human identification system based ECG signal[C]. TENCON 2005: 1-4.
  • 3Israel SA, lrvine JM, Cheng A, et al. ECG to identify individuals [J]. Pattern Recogn, 2005, 38(1):133-142.
  • 4Das K, Zhang Sheng, Giesbrecht B, et al. Using rapid visually evoked EEG activity for person identificatioin[J]. EMBS 2009( 13):2490-2493.
  • 5Beritelli F, Serrano S. Biometric identification based on frequency analysis of cardiac sounds[J]. IEEE T Inf Foren Sec, 2007, 2(3):596-604.
  • 6Beritelli F, Spadaccini A. Human identity verification based on Melfrequency analysis of digital heart sounds[C]. DSP 2009: 765-769.
  • 7Phua K, Chen JF, Dat TH, et al. Heart sound as a biometric[J]. Pattern Recogn, 2008, 4(3): 906-919.
  • 8郭兴明,吴玉春,肖守中.自适应提升小波变换在心音信号预处理中的应用[J].仪器仪表学报,2009,30(4):802-806. 被引量:21
  • 9Biswas S, Ahmad S. Speaker identification using cepstral based features and Discrete Hidden Markov Mode[C]. IETICT, 2007:303- 306.
  • 10Liu Minghui, Xie Yanlu, Yao Zhiqiang, et al. A new hybrid GMM/ SVM for speaker verification[C]. ICPR, 2006.

二级参考文献7

共引文献20

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部