期刊文献+

齿轮传动系统随机振动模型与仿真 被引量:4

Stochastic Vibration Model and Simulation of Gear Transmission System
在线阅读 下载PDF
导出
摘要 除考虑齿轮的齿侧间隙、时变啮合刚度、综合啮合误差和轴承纵向响应外,还考虑了由扭矩波动引起的低频外激励和齿轮阻尼比、齿侧间隙、激励频率、啮合刚度的随机扰动,根据牛顿定律建立了单对三自由度直齿齿轮传动系统的动力学方程.利用系统的分岔图、相图、时间历程图、Poincaré映射图、李雅普诺夫指数和功率谱图分析了齿轮传动系统在齿轮时变啮合刚度变化下的动力学特性,以及啮合刚度的随机扰动对系统动力学的影响.数值仿真表明,随着齿轮时变啮合刚度的增大,齿轮传动系统从周期运动通过倍化分岔通向混沌运动;在啮合刚度的随机扰动不是很大时,系统解的周期结构不会发生大的变化. Considering the gear backlash, time-varying mesh stiffness, gear comprehensive error and bearing longitudinal response, as well as a low-frequency external excitation caused by the torque fluctuation and the random disturbances of damping ratio, gear backlash, excitation frequency and meshing stiffness, a dynamic equation for a single pair of three degrees of freedom spur gear system was established according to Newton' s laws. Using the bifurcation diagram, phase diagram, time history chart, Poincar6 map, Lyapunov exponents and power spectrum of the system, the dynamic characteristics of the gear transmission system under the change of time- varying meshing stiffness were analyzed, as well as the effect of the meshing stiffness random disturbance on the system dynamics. Numerical simulation results showed that the gear transmission system will transform from the period motion to chaos motion by doubling bifurcation with increasing the time-varying meshing stiffness. When the meshing stiffness random disturbance is not big, the periodic structure of the system solution won' t change much.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期578-582,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50875041) 新世纪优秀人才支持计划项目(NCET-08-0103) 中央高校基本科研业务费专项资金资助项目(N110403008) 辽宁省教育厅科技研究项目(L2012068)
关键词 齿轮传动系统 随机振动 混沌 POINCARÉ映射 分岔 gear transmission system stochastic vibration chaos Poincar6 map bifurcation
  • 相关文献

参考文献11

  • 1Theodossiades S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash [ J ]. Journal of Sound and Vibration,2000,229 ( 2 ): 287 - 310.
  • 2Shyyaba A, Kahraman A. Non-linear dynamic analysis of multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions [ J ]. Journal of Sound and Vibration,2005,279 ( 3 ) : 417 - 451.
  • 3Matej G,Dani J, Pavle B, et al. Model-based prognostics of gear health using stochastic dynamical models [ J ]. Mechanical Systems and Signal Processing,2011,25 ( 2 ) :537 - 548.
  • 4Heyns T, Godsill S J, de Villiers J P, et al. Statistical gear health analysis which is robust to fluctuating loads and operating speeds [ J ]. Mechanical Systems and Signal Processing, 2012,27 (4) :651 - 666.
  • 5Wang Y, Zhang W J. Stochastic vibration model of geartransmission systems considering speed-dependent random errors [ J ]. Nonlinear Dynamics, 1998,17 (2) : 187 - 203.
  • 6卢剑伟,刘梦军,陈磊,赵韩.随机参数下齿轮非线性动力学行为[J].中国机械工程,2009,10(3):330-333. 被引量:17
  • 7Velex P, Ajimi M. On the modeling of excitations in geared system by transmission errors [ J ]. Journal of Sound and Vibration,2006,209 ( 3/5 ) : 882 - 909.
  • 8孙志礼,袁哲.齿轮随机参数系统非线性振动响应可靠性分析[J].东北大学学报(自然科学版),2011,32(6):838-842. 被引量:6
  • 9王倩倩,张义民,张振先,蒋跃辉.齿轮系统随机振动及其传动误差的可靠性及灵敏度分析[J].东北大学学报(自然科学版),2011,32(12):1741-1744. 被引量:11
  • 10Kahraman A, Singh R. Nonlinear dynamics of a geared rotor- bearing system with multiple clearances[ J]. Journal of Sound and Vibration, 1991,144 ( 3 ) :469 - 506.

二级参考文献33

  • 1董海军,陈乾堂,沈允文.齿轮系统拍击振动中的高速碰撞和低速接触[J].中国机械工程,2006,17(10):1068-1070. 被引量:4
  • 2Roy R V, Nauman E. Noise--Induced Effect on a Nonlinear Oscillator[J].Journal of Sound and Vibration, 1995,183 (2) : 269-295.
  • 3Wang Y, Zang W J. Stochastic Vibration Model of Gear Transmission Systems Considering Speed--dependent Random Errors [J]. Nonlinear Dynamics, 1998,17(2) : 187-203.
  • 4Velex P,Ajmi M. On the Modeling of Excitations in Geared System by Transmission Errors[J]. Journal of Sound and Vibration,2006,209(3/5) :882-909.
  • 5Giuseppe C. D' Ambrosio E. Perturbative and Numerical Methods for Stochastic Nonlinear Oscillators[J]. Physica A,1999,273(3/4):329-351.
  • 6Spanos P D. Approximate Analysis of Random Vibration through Stochastic Averaging[J].Nonlinear Dynamics, 1997,14(4) : 357-372.
  • 7Huang K J, Liu T S. Dynamic analysis of a spur gear by the dynamic stiffness method [ J] . Journal of Sound and Vibration, 2000,234(2):311- 329.
  • 8Bonori G, Barbieri M, Pellicano F. Optimum profile modifications of spur gears by means of genetic algorithms[J].Journal of Sound and Vibration, 2008, 313:603 -616.
  • 9Theodossiades S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash [J].Journal of Sounal and Vibration, 2000,229(2) :287 -310.
  • 10Shyyaba A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train using multi-tern1 harmonic balance method: sub-harmonic motions [ J ]. Journal of Sound and Vibration, 2005,279:417 -451.

共引文献46

同被引文献161

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部