期刊文献+

羧基化碳纳米管载铂催化剂对微生物燃料电池阴极氧还原性能的影响 被引量:12

Influence of Carboxylic Carbon Nanotube Supported Platinum Catalyst on Cathode Oxygen Reduction Performance of MFC
原文传递
导出
摘要 阴极催化剂是影响微生物燃料电池(microbial fuel cell,MFC)性能的关键要素.为了考察不同羧基化方法改性的碳纳米管(carbon nanotube,CNT)负载Pt的催化氧还原效率,分别在80℃和95℃条件下对CNT进行了羧基化,采用浸渍-沉淀法制备了Pt/CNT催化剂(Pt/CNT-80和Pt/CNT-95),并在空气阴极MFC体系中验证了其催化氧还原效果(MFC-80、MFC-95和MFC-C).结果表明,MFC-95和MFC-80的最大功率密度分别为568.8 mW.m-2和412.8 mW.m-2,内阻分别为204.7Ω和207.7Ω,开路电压分别为0.719 V和0.651 V.而对照MFC-C的最大功率密度仅为5.4 mW.m-2,内阻为826.2Ω.XPS和XRD分析结果显示,Pt/CNT-95催化氧还原效果优于Pt/CNT-80,原因可能是95℃羧基化过程在CNT表面引入了丰富的含氧基团. The cathodic catalyst plays an important role in the electricity generation of the microbial fuel cell(MFC).In order to evaluate the efficiency of oxygen reduction on the carbon nanotube(CNT) functionalized with different carboxylic groups supported Pt,carboxylic CNTs under the conditions of 80℃ and 95℃ were prepared,respectively.Pt/CNT catalysts(Pt/CNT-80 and Pt/CNT-95) was prepared by the dipping-precipitation method and their oxygen reduction efficiency was tested in the MFC(MFC-80,MFC-95 and MFC-C) with the air cathode.The results showed that the maximum power output densities of the MFC-95 and MFC-80 were 568.8 mW·m-2 and 412.8 mW·m-2,internal resistances were 204.7 Ω and 207.7 Ω,and open circuit potentials were 0.719 V and 0.651 V,respectively.However,the maximum power output density of the control MFC-C was only 5.4 mW·m-2,and its internal resistance was 826.2 Ω.XPS and XRD analysis results demonstrate that the efficiency of Pt/CNT-95 catalyst is better than Pt/CNT-80 may result from the surface of carboxylic CNT in the 95℃ introduced rich oxygen containing groups.
出处 《环境科学》 EI CAS CSCD 北大核心 2013年第4期1617-1622,共6页 Environmental Science
基金 国家自然科学基金项目(30800796 31272482) 教育部新世纪优秀人才支持计划项目(NCET-11-0166) 教育部高等学校博士点专项基金项目(20070561082) 广东省科技计划项目(2007A020100001)
关键词 微生物燃料电池 碳纳米管 羧基化 空气阴极 氧还原活性 microbial fuel cell(MFC) carbon nanotube(CNT) carboxylic air-cathode oxygen reduction activity
  • 相关文献

参考文献30

  • 1Potter M. Electrical effects accompanying the decomposition of organic compounds [ J ]. Proceedings of the Royal Society of London, Series B, Containing Papers of a Biological Character, 1911, 84(571) : 260-276.
  • 2Logan B E. Microbial Fuel Cells [ M ]. Hoboken Inc: John Wiley & Sons, 2008. 62-68.
  • 3Zhu N W, Chen X, Zhang T, et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber tblt anodes[ J]. Bioresource Technology, 2011 , 102 ( 1 ) : 422-426.
  • 4Kim B H, Park I) H, Shin P K, et al. Mediator-less biofuel cell[P]. U. S. Patent: 5976719, 1999. 12. 2.
  • 5Fan Y Z, Evan S, Liu H. Quantification of the internal resistance distribution of microbial fuel ceils [ J . Environmental Science & Technology, 2008, 42(21 ) : 8101-8107.
  • 6Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells [ J . Environmental Science & Technology, 2004, 38( 18): 4900-4904.
  • 7Cheng S A, Liu H, Logan B E. Increased performance of single- chamber microbial fuel ceils using an improved cathode structure [ J]. Electrochemistry Communications, 2006, 8(3 ) : 489-494.
  • 8Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production [J]. Nature, 1998, 393(6683): 346-349.
  • 9Colbert D T, Smalley R E. Fullerene- nanobutes for molecular electronics [ J ]. Trends in Biotechnology, 1999, 17 (2) : 46-50.
  • 10陈青海,刘欢,陈久岭,李永丹.处理方法对碳纳米管织构性质及负载Pd—Pt催化剂萘加氢反应活性的影响[J].炭素,2006(3):8-14. 被引量:2

二级参考文献169

共引文献112

同被引文献169

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部