期刊文献+

高密度小波变换在滚动轴承复合故障诊断中的应用 被引量:10

Application of higher density wavelet transform to composite fault diagnosis of rolling bearing
在线阅读 下载PDF
导出
摘要 针对目前滚动轴承中多种微弱故障难以准确识别的难题,提出基于高密度离散小波变换和包络谱的滚动轴承复合故障诊断方法。首先对采集的轴承振动信号进行高密度离散小波变换;然后对各尺度上的小波系数和尺度系数进行单子带重构,以消除频率混叠的影响;最后对各子带信号分量进行包络谱分析,并通过滚动轴承各典型故障的特征频率,识别滚动轴承存在的各种故障。将所提方法应用于具有复合故障的滚动轴承的诊断,并与其他常用的诊断方法进行对比,结果表明该方法能有效地实现滚动轴承早期复合故障诊断。 Aiming at the difficulties in accurate reorganization of several weak faults currently,a composite fault diagnosis method based on higher density discrete wavelet transform and envelope spectrum is proposed.Firstly,the higher density discrete wavelet transform is used to decompose acquired vibration signals of rolling bearings.Then,the single-subband reconstruction is performed on the wavelet coefficients and scaling coefficients at each scale in order to solve frequency aliasing.Finally,the envelope spectra of all subband signals are calculated,and all faults can be recognized according to the characteristic frequencies of the typical faults.The proposed method is applied to the diagnosis of the rolling bearings with composite faults,and is compared with other common fault diagnosis method.The results show that the proposed method can be effectively used for the early composite fault diagnosis of rolling bearings.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期13-19,共7页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50905191 51005262) 重庆市科委自然科学基金计划资助项目(2010BB4227)
关键词 小波变换 滚动轴承 故障诊断 单子带重构 包络谱 wavelet transforms rolling bearing fault diagnosis single-subband reconstruction envelope spectrum
  • 相关文献

参考文献13

二级参考文献65

共引文献424

同被引文献53

  • 1周智,朱永生,张优云,袁幸,师浩浩.基于EMD间隔阈值消噪与极大似然估计的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):155-159. 被引量:9
  • 2高立新,王大鹏,刘保华,丁庆新,丁芳,李民.轴承故障诊断中共振解调技术的应用研究[J].北京工业大学学报,2007,33(1):1-5. 被引量:25
  • 3钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 4刘金琨.智能控制[M].北京:电子工业出版社,2012.
  • 5Sun, Wei; Yang, Guo An; Chert, Qiong et al. Fault diag- nosis of rolling bearing based on wavelet transform and enve- lope spectrum correlation[ J ] . JOURNAL OF VIBRATION AND CONTROL ,2013,19 (6) :924 - 941.
  • 6Kankar, P. K. ; Shatw, Satish C. Harsha, S. P. Fault diagno- sis of rulling element bearing using cyclic autorrelation and wavelet transform [J]. NEUROCOMPUTING ,2013,110:9 - 17.
  • 7Pandya, DH ; Upadhyay, SH ; Harsha, SP. Fault diagno- sis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN [ J ]. EXPERT SYS- TEMS WITH APPLICATIONS,2013,40(10) :4137 -4145.
  • 8付新欣.基于小波变换的滚动轴承故障故障诊断技术研究[D].沈阳:沈阳航空航天大学,2012.
  • 9R. L. Widner, W. E. Littmann. BearingDamage Analysis. Na-tional Bureau of Standards, Special Publication, 1976,423.
  • 10BARELLA S, BELLOGINI M. BONIARDI M,et al. Fail-ure Analysis of a Steam Turbine Rotor [J]. EngineeringFailure Analysis,2011, 18(6) : 1 511-1 519.

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部