期刊文献+

基于分层分数条件随机场的行为识别 被引量:3

Human behavior recognition based on stratified fractal conditional random field
在线阅读 下载PDF
导出
摘要 针对隐条件随机场(HCRF)的实时性问题和隐动态条件随机场(LDCRF)行为转换时的标记偏差问题,提出了一种基于分层分数条件随机场(SFCRF)模型的行为识别算法。该算法改进了LDCRF,并提出分数标记的概念,将人体行为的完整性和有向性具体化。实验结果表明,该算法取得了比条件随机场(CRF)、HCRF和LDCRF更好的识别效果。 In view of real-time issue of the Hidden Conditional Random Field(HCRF) and marked deviation problem of the Latent-Dynamic Conditional Random Field(LDCRF) during behavior transforming,this article proposed a kind of behavior recognition algorithm based on Stratified Fractal Conditional Random Field(SFCRF).The proposed algorithm improved LDCRF and put forward the concept of score mark,which made the integrity and direction of human behavior specific.The experimental results show that the proposed algorithm can obtain better recognition effect than Conditional Random Field(CRF),HCRF and LDCRF.
出处 《计算机应用》 CSCD 北大核心 2013年第4期957-959,997,共4页 journal of Computer Applications
基金 国家863计划项目(2008AA01Z148) 国家自然科学基金资助项目(60975022) 博士点专项科研基金资助项目(20102304110004)
关键词 隐条件随机场 隐动态条件随机场 标记偏差 行为识别 条件随机场 Hidden Conditional Random Field(HCRF) Latent-Dynamic Conditional Random Field(LDCRF) marked deviation behavior recognition Conditional Random Field(CRF)
  • 相关文献

参考文献13

二级参考文献112

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3王张琦,曹渠江.基于马尔可夫链的半监督分类器[J].上海理工大学学报,2007,29(1):51-54. 被引量:1
  • 4冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 5Aggarwal J K, Cai Q. Human motion analysis: A review [ J]. Computer Vision and Image Understanding, 1999, 73 (3) : 428-440.
  • 6Gavrila D M. The visual analysis of human movement: A survey [ J]. Computer Vision and Image Understanding, 1999, 73( 1 ): 82-98.
  • 7Moeslund Thomas B, Granum Erik. A survey of computer visionbased human motion capture [ J ]. Computer Vision and Image Understanding, 2001, 81 (3): 231-286.
  • 8Moeslund Thomas B, Hilton Adrian, Kruger Volker. A survey of advances in vision-based human motion capture and analysis [ J]. Computer Vision and Image Understanding, 2006, 104(3) : 90-126.
  • 9Johansson G. Visual motion perception [ J ]. Scientific American, 1975, 232(2) : 76-88.
  • 10Robertson N, Reid I. A general method for human activity recognition in video [ J ]. Computer Proceedings of Vision and Image Understanding, 2006, 104(2-3): 232-248.

共引文献72

同被引文献33

  • 1李琳,张晓龙.基于RBF核的SVM学习算法的优化计算[J].计算机工程与应用,2006,42(29):190-192. 被引量:42
  • 2David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 3HORN B K, SCHUNCK B G. Determining optical flow[ EB/OL]. [ 2015-O2-28 ]. http ://dspace. mit. edu/handle/1721.1/6537.
  • 4LIPTON A, FUJIYOSHI H, PATIL R. Moving target classification and tracking from real-time video [ C ]//Proc. 1EEE Workshop on Applications of Computer Vision. Princeton, NJ : IEEE Press, 1998 : 8-14.
  • 5COLLNS R,LIPTON A. A system for video surveillance and ring: VSAM final report [EB/OL]. [2015-02-28]. http:// www. researehgate, net/publication/245100343_system for video_sur- veillance and monitoring_VSAM_final_report.
  • 6YAMATO J, OHYA J, [SHI1 K. Recognizing human action in time-sequential images using hidden Markov model [ C ]//Proe. IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition, 1992. [ S.l. ] : IEEE Press, 1992:379-385.
  • 7CORTES C, VAPNIK V. Support-vector networks [ J ]. Machine Learning, 1995,20(3 ) :273-297.
  • 8Daniel Weinland,Remi Ronfard,Edmond Boyer.A survey of vision-based methods for action representation, segmentation and recognition[J].Computer Vision and Image Understanding.2010(2)
  • 9Ivan Laptev.On Space-Time Interest Points[J]. International Journal of Computer Vision . 2005 (2)
  • 10Wang H,Klaser A,Schmid C,et al.Action recognition by dense trajectories. Computer Vision and Pattern Recognition (CVPR),2011IEEE Conference on.IEEE . 2011

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部