期刊文献+

面向应急响应的无人机图像快速自动拼接 被引量:13

Fast Automatic Stitching for Images of Unmanned Aerial Vehicle in Emergency Response
在线阅读 下载PDF
导出
摘要 根据应急响应的需求,为了快速、自动且稳定地获取遥感区域的全覆盖图像,提出一种直接适用于无人机序列图像的拼接方法.利用无人机平台上的低精度飞行控制系统与无标定的非量测相机获取序列图像,并进行快速自动配准;根据全局地面点在多视图像上的投影点集,基于单应矩阵和自由投影中心建立整体优化误差方程,并利用Levenberg-Marquardt非线性迭代求解;再根据并行几何定位拼接线的快速处理方法进行图像插值和融合,实现全流程自动化的图像输出.通过灾害应急响应的无人机遥感实验结果表明,在1h内处理完成450幅序列图像,获得定位精度小于3个像素的0.05m分辨率图像;文中方法适合无人机的序列图像配准,为应急响应提供了有效的技术支持. With the demand of emergency response, in order to obtain full cover image of remote sensing area fast, automatically and stably, this paper proposes a suitable stitching method of image sequences from unmanned aerial vehicle (UAV). A position and orientation system with low accuracy and a non-metric camera without calibration mounted on UAV can photograph the interested area to attain the image sequences and fast automatic registration. With the global ground points and the corresponding proiection points, the whole optimum error equations are calculated using Levenberg- Marquardt algorithm for nonlinear iteration of the Homography matrices and unrestrained projective centers. Then, the parallel geometric seeking algorithm of stitching line is applied l image interpolation and image fusion are processed for whole automatic image outputting. Through the disaster emergency response experiment based on UAV remote sensing, the 0.05 m resolution full cover image with less than 3 pixel of positioning accuracy are obtained from 450 images in an hour. The fast automatic algorithm proposed in this paper is appropriate for image sequences from UAV, which can provide effective technology support for emergency response.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第3期410-416,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 科技部国际科技合作计划资助项目(Y0I0010062) 中国科学院国际合作项目(GJHZ1003) 中国科学院对外重点合作项目(Y0Y00630KX)
关键词 无人机遥感 序列图像配准 单应矩阵 非线性迭代 拼接线 remote sensing of unmanned aerial vehicle registration of image sequences~ homographymatrix nonlinear iteration stitching line
  • 相关文献

参考文献17

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 2谢东海,詹总谦,江万寿.改进Harris算子用于点特征的精确定位[J].测绘信息与工程,2003,28(2):22-23. 被引量:51
  • 3Triggs B, McLauchlan P F, Hartley R I, et al. Bundle adjustment: a modern synthesis [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 1999, 1883: 298- 372.
  • 4袁修孝,明洋.POS辅助航带间航摄影像的自动转点[J].测绘学报,2010,39(2):156-161. 被引量:26
  • 5林宗坚.UAV低空航测技术研究[J].测绘科学,2011,36(1):5-9. 被引量:61
  • 6Chen S E. QuickTime VR: an image-based approach to virtual environment navigation [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press,1995: 29-38.
  • 7Szeliski R. Image alignment and stitching: a tutorial [J]. Foundations and Trends: in Computer Graphics and Vision, 2006, 2(1): 1-104.
  • 8Brown M, Lowe D G. Automatic panoramic images stitching using invariant features [J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 9Davis J. Mosaics of scenes with moving objects [C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 1998:354-360.
  • 10Cherkassky B V, Goldberg A V, Radzik T. Shortest paths algorithms: theory and experimental evaluation [J]. Mathematical Programming, 1996, 73(2): 129-174.

二级参考文献49

共引文献245

同被引文献110

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部