期刊文献+

基于动态等级PSO-ELMAN的乙烯裂解深度模型及其优化控制 被引量:1

Optimal Control of Cracking Depth Based on ADHPSO-ELMAN for Ethylene Cracking Furnace
在线阅读 下载PDF
导出
摘要 提出一种自适应动态等级粒子群算法(ADHPSO)。该算法保持粒子多样性,能摆脱局部极值,有良好的全局收敛性。将ADHPSO训练ELMAN神经网络,建立乙烯裂解炉裂解深度的在线预测模型。研究一种集成ADHPSO-ELMAN过程建模的裂解深度智能优化控制方法,得到裂解过程的最优操作条件。仿真计算表明,该方法显著提高了乙烯及丙烯的收率,具有良好的稳定性和适应性,对实际生产具有极大的应用潜力。 An adaptive dynamic hierarchical version of the particle swarm optimization (ADHPSO) metaheuris- tic is proposed. Rid of immersing is got to the local optimization and has good global searching performance. De- pending on the quality of their so-far best-found solution, the diversity of the particles had been maintained. Mean- while, the ELMAN neural network is trained by ADHPSO , and established the forecasting model of ethylene crack- ing depth online, study a intelligent optimize control method of integrating ADHPSO with ELMAN process model. The optimal operating conditions for cracking process is got. The simulation results show that the method can greatly improve the ethylene and propylene yield with good stability and adaptability to the actual production, and has great potential application.
机构地区 上海交通大学
出处 《科学技术与工程》 北大核心 2013年第7期1860-1867,1888,共9页 Science Technology and Engineering
关键词 裂解深度 动态等级粒子群 ELMAN神经网络 裂解炉 优化控制 cracking depth ADHPSO ELMAN neural network cracking furnace optimal control
  • 相关文献

参考文献5

二级参考文献92

共引文献461

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部