期刊文献+

迭代学习控制系统的误差跟踪设计方法 被引量:50

Error Tracking of Iterative Learning Control Systems
在线阅读 下载PDF
导出
摘要 提出能够实现期望误差轨迹完伞跟踪的迭代学习控制系统设计方法,旨在放宽常规迭代学习控制方法的初始定位条件,在每次迭代时允许初值定位在任意位置.这种方法对于预先给定的期望误差轨迹,经迭代学习,使得实际跟踪误差收敛于预定的误差轨迹,这样,预设的误差轨迹即最终形成的误差轨迹.针对常参数、时变参数以及复合参数三种情形,分别采用类Lyapunov方法设计迭代学习控制系统.所设计的未含/含限幅作用的参数学习律,能够使得跟踪误差轨迹在整个作业区间上与预定轨迹完伞吻合,并保证系统中所有信号的有界性.给出的仿真结果表明所提方法的有效性. This paper presents an iterative learning control method with which the error trajectory can be pre-specified. The method dose not require that the initial condition remains to be a fixed value for each iteration, whereas this requirement is usually assumed in conventional methods. The proposed strategy is to make the tracking error trajectory converge to the pre-specified one over the entire interval. The constant parametrization, time-varying parametrization, and a combined situation are respectively examined. By the Lyapunov-like approach, accordingly, learning laws are given and the learning systems are analyzed in details. With the help of unsaturated/saturated learning law, the system error coincides with the pre-specified error trajectory over the entire interval, and all the signals in close-loop system are guaranteed to be bounded. Numerical results are presented to demonstrate the effectiveness of the proposed learning control method.
出处 《自动化学报》 EI CSCD 北大核心 2013年第3期251-262,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61174034 60874041)资助~~
关键词 初值问题 收敛性 迭代学习控制 类Lyapunov方法 Initial condition problem, convergence, iterative learning control, Lyapunov-like approach
  • 相关文献

参考文献26

  • 1Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140.
  • 2Heinzinger G, Fenwick D, Paden B, Miyazaki F. Robust learning control. In: Proceedings of the 28th IEEE Confer- ence on Decision and Control. Tampa, Florida, USA: IEEE, 1989. 436-440.
  • 3Lee H S, Bien Z. Study on robustness of iterative learning control with non-zero initial error. International Journal of Control, 1996, 64(3): 345-359.
  • 4Park K H. An average operator-based PD-type iterative learning control for variable initial state error. IEEE Trans- actions on Automatic Control, 2005, 50(6): 865-869.
  • 5Porter B, Mohamed S S. Iterative learning control of par- tially irregular multivariable plants with initial impulsive ac- tion. International Journal of Systems Science, 1991, 22(3): 447-454.
  • 6Dawson D M, Qu Z, Dorsey J F, Lewis F L. On the learning control of a robot manipulator. Journal of Intelligent and Robotic Systems, 1991, 4(1): 43-53.
  • 7Qu z H, Dorsey J, Dawson D M, Johnson R W. Linear learning control of robot motion. Journal of Robotic Sys- terns, 1993, 10(1): 123-140.
  • 8Arimoto S, Naniwa T, Suzuki H. Robustness of P-type learn- ing control with a forgetting factor for robotic motions. In: Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu, Hawaii, USA: IEEE, 1990. 2640-2645.
  • 9Sadegh N, Horowitz R, Kao W W, Tomizuka M. A unified approach to the design of adaptive and repetitive controllers for robotic manipulators. ASME Journal of Dynamic Sys- tems, Measurement, and Control, 1990, 112(4): 618-629.
  • 10Kuc T, Lee J S. An adaptive learning control of uncertain robotic systems. In: Proceedings of the 30th IEEE Confer- ence on Decision and Control. Brighton, England: IEEE, 1991. 1206-1211.

二级参考文献66

共引文献70

同被引文献335

引证文献50

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部